
Declarative Specification of
Template-Based Textual Editors

Tobi Vollebregt
tobivollebregt@gmail.com

Lennart C. L. Kats
l.c.l.kats@tudelft.nl

Eelco Visser
visser@acm.org

Software Engineering Research Group
Delft University of Technology

The Netherlands

ABSTRACT
Syntax discoverability has been a crucial advantage of structure ed-
itors for new users of a language. Despite this advantage, structure
editors have not been widely adopted. Based on immediate pars-
ing and analyses, modern textual code editors are also increasingly
syntax-aware: structure and textual editors are converging into a
new editing paradigm that combines text and templates. Current
text-based language workbenches require redundant specification
of the ingredients for a template-based editor, which is detrimental
to the quality of syntactic completion, as consistency and complete-
ness of the definition cannot be guaranteed.

In this paper we describe the design and implementation of a
specification language for syntax definition based on templates. It
unifies the specification of parsers, unparsers and template-based
editors. We evaluate the template language by application to two
domain-specific languages used for tax benefits and mobile appli-
cations.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques—
pretty printers, program editors; D.3.1 [Programming Languages]:
Processors—parsing, code generation; D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—syntax; D.2.6 [Software
Engineering]: Programming Environments; D.2.11 [Software Ar-
chitectures]: Languages

1. INTRODUCTION
Language-aware structure editors provide a template-based para-

digm for editing programs. They allow composing programs by se-
lecting a template and filling in the placeholders, which can again
be extended using templates. A crucial advantage of structure edi-
tors is syntax discoverability, helping new users to learn a language
by presenting possible syntactic completions in a menu. Struc-
ture editors can be automatically generated from a syntax defini-
tion. Notable projects aiming at automatic generation of struc-
ture editors include MPS [23] and the Intentional Domain Work-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LDTA 2012 Tallinn, Estonia
Copyright 2012 ACM 978-1-4503-1536-4 ...$15.00.

bench [19]. Structure editors can be used for general-purpose lan-
guages or for domain-specific languages (DSLs). A modern exam-
ple of the former is the structure editor in MPS [23], for extensible
languages based on Java. An example of the latter category is the
DSL for modeling tax-benefit rules developed by IT services com-
pany Capgemini using the Cheetah system. Cheetah’s facilities for
discoverability and the use of templates are particularly effective
to aid a small audience of domain expert programmers manage the
verbose syntax based on legal texts.

Despite their good support for discoverability, structure editors
have not been widely adopted. Pure structure editors tend to in-
troduce an increased learning curve for basic editing operations.
For example, they only support copy-pasting operations that main-
tain well-formedness of the tree and require small, yet non-trivial
“refactoring” operations for editing existing code, e.g. when con-
verting an if statement to an if-else statement. They also lack
integration with other tools and expose the user to vendor lock-in.
Transferring code across tools requires a shared representation that
is generally not available. With software engineering tools such as
issue trackers, forums, search, and version control being based on
text, a textual representation is preferable, but requires the use of a
parser and a parseable language syntax. This forces tools based on
structure editors to find new solutions to problems long solved in
the text domain.

To alleviate the problems of structure editors, there has been a
long history of hybrid structure editors that introduce textual edit-
ing features to structure editors [24, 18, 11]. Conversely, modern
textual code editors such as those in Eclipse and Visual Studio are
increasingly syntax-aware, based on parsers that run while a pro-
gram is edited. Over time, they have acquired features ranging
from code folding to syntactic completions allowing programmers
to fill in textual templates. Indeed, structure and textual editors
are converging into a new editing paradigm that combines text and
templates.

In order to provide the advantages of text editing to the tax-
benefit DSL of Capgemini, we converted the language from the
Cheetah system, which uses a structure editor, to the parser-based
Spoofax language workbench [10]. We quickly realized that it
would be impossible for a user to write new models in such a ver-
bose language in the textual editor of Spoofax, without accurate
and complete syntax discovery. In syntax-aware text editors this
discovery is provided in the form of syntactic completion. Accu-
rate and complete syntactic completion depends critically on two
features of a language workbench: first, the syntactic completion
proposals presented to the user must be relevant and complete, and
second, it must be feasible to create and maintain the specification
necessary to make the editor aware of these completion proposals.

(a) Completion is triggered: a pop-
up menu shows the available com-
pletion proposals.

(b) Completion proposals are filtered
by typing the fun prefix into the edi-
tor.

(c) The type of function argument is
selected.

(d) Back to the start: completion is
triggered for the body of the func-
tion.

Figure 1: Template-oriented editing in a textual editor. The tem-
plates are editable as text and mark placeholders with rectangles,
providing context menus to assign their values.

Text-based language workbenches currently require redundant
specification of the ingredients for a template-based editor, i.e. con-
crete syntax, abstract syntax, completion templates, and pretty-
print rules, which is detrimental to the quality of syntactic com-
pletion in syntax-aware editors. Evolution of the language requires
maintenance of all ingredients in order to maintain completeness
and consistency. It is tedious and therefore easy to make mistakes
while adding or adapting a completion template for each new or
modified language construct.

In this paper, we present the design of a template-based syntax
definition language1 that unifies the specification of parsers, un-
parsers, and template-based editors in order to support the efficient
construction of template-based editing facilities in textual editors.
In order to improve the runtime support for these template-based
editing facilities, we describe an approach to compute the set of
applicable templates at the location of the cursor.

We have implemented the template language in an extension of
the Spoofax language workbench [10] and validated the approach
by applying the techniques in two mature DSLs.

We proceed as follows. In the next section, we provide back-
ground on language and editor implementation. In Section 3 we
describe the design of a template-based specification language for
syntax. We then describe how to generate template-based editors
from such a language in Section 4 and how template-based edit-
ing can be supported in Section 5. In Section 6 we evaluate the
approach. We discuss related work in Section 7 and present our
conclusion in Section 8.

2. BACKGROUND
Modern integrated development environments (IDEs) contribute

significantly to the productivity of software developers and the adop-
tion of new languages. The development of a complete IDE from
scratch is a significant undertaking. As an alternative, language
workbenches [6, 10, 23] can generate a complete IDE plug-in and
a compiler from high-level language definitions.

Key to the generation of full-featured editors is the use of an ab-
stract representation of programs that is maintained as programs are
1http://strategoxt.org/Spoofax/TemplateLanguage

context-free syntax
"module" ID Definition* -> Start {cons("Module")}
"entity" ID "{" Property* "}" -> Definition {cons("Entity")}
ID ":" Type -> Property {cons("Property")}
ID -> Type {cons("Type")}

(a) Grammar of the language, in SDF

completion template : Start = "module " <m> (blank)
completion template : Definition = "entity " <e> " {}" (blank)
completion template : Property = <x> " : " <T> (blank)

(b) Completion templates, for syntactic completion, in the EditorService
language

[Module -- V[H[KW["module"] _1] _2],
Entity -- V is=2 [H[KW["entity"] _1 KW["{"]] _2] KW["}"],
Property -- H[_1 KW[":"] _2]

]

(c) Pretty printer specification, in the PP language

Figure 2: Redundant concrete syntax specification in Spoofax

edited. The abstract representation is used for editor services, i.e.
facilities such as an outline of the program and reference resolving
to navigate to the definition sites of identifiers. Some of these fa-
cilities can be implemented directly at the level of concrete syntax,
using regular expressions or other forms of pattern matching, but a
structured, abstract representation ensures a uniform interface for
editor services.

A central part of the definition of a language is the mapping be-
tween the concrete syntax of a language and its abstract represen-
tation. In structure editors, the mapping is defined as a projection
from abstract representation to concrete syntax. In textual editors,
the mapping is defined through a parser that constructs the abstract
representation from a textual concrete syntax. Syntax-aware textual
editors also apply a reverse mapping in editor services such as con-
tent completion, pretty printing, code formatting, and refactoring.
In particular, modern syntax-aware textual editors support genera-
tion of code snippets via textual templates, triggered in a context-
sensitive fashion by means of a content completion user interface.
For example, Figure 1 demonstrates how a simple function is cre-
ated using content completion.

In order to support the various applications of syntax definition,
the different aspects of parsing, unparsing, formatting, and comple-
tion templates are often specified separately. For instance, Figure 2
shows an example of concrete syntax specification in Spoofax. Fig-
ure 2a defines a grammar, specified in SDF [8, 22], which is used to
generate a parse table. Figure 2b defines completion templates that
include layout and placeholder text. Figure 2c defines pretty print-
ing rules, used for formatting existing and refactored or otherwise
transformed code. Without going into the details of the three ex-
amples, it is immediately obvious that there is redundancy in these
specifications.

Redundancy in syntax definitions is a common issue in tools to
create syntax-aware textual editors, as we discuss in Section 7. It
poses a maintenance problem as the language evolves: completion
templates and pretty printer specification may lag behind modifi-
cations to the grammar of the language, hampering their complete-
ness. One solution for the redundancy is to generate a default pretty
printer from the syntax definition as applied for Spoofax in [10],
and possibly generate default completion templates as well. Un-
fortunately, such a generative approach means that manually cus-
tomized templates and formatting rules have to be combined with
generated rules, which means it does not address the maintenance
problem of these separate specifications.

http://strategoxt.org/Spoofax/TemplateLanguage

3. TEMPLATE-BASED SYNTAX
DEFINITION

In this section we introduce a new syntax definition language
based on templates as those found in template engines such as
StringTemplate [14]. Additionally, we base the design of auxil-
iary features of the language, such as priority specification and lex-
ical syntax, on that of SDF [8, 22]. The aim of the language is
to eliminate the redundancy between different syntactic specifica-
tions, by combining concrete syntax, abstract syntax, formatting,
whitespace, and placeholder names. We argue that through the use
of templates, the language is rich in information yet elegant and
simple.

Basic template-based syntax definitions consist of template pro-
ductions that correspond to production rules in a grammar. They
have the following form:

s.label = <
template

>

where s is the name of the symbol being defined, label is its con-
structor label used for the abstract representation, and template is a
template that may include concrete syntax, references to other sym-
bols (placeholders), and layout. Both the template and its place-
holders are enclosed by <. . . > brackets.

As a first example, the following template productions define
basic arithmetic expressions:

templates
Exp.Num = <<INT>>
Exp.Plus = <<Exp> + <Exp>>
Exp.Times = <<Exp> * <Exp>>

The first production defines a template for number literals, defin-
ing a template for the Exp symbol based on a reference to the INT

symbol. The other productions specify templates for the + and
* operators. The last two templates consist of five elements: an
<Exp> placeholder, whitespace, the + or * sign, more whitespace,
and another placeholder. Of these elements, the whitespace ele-
ments are not considered for parser generation. Instead they are
used for formatting in a generated pretty printer and completion
templates. Whitespace characters treated this way are spaces, tabs,
and newlines.

Placeholders can use the common * and + operators for repeti-
tion, and ? for optionals. For repeated symbols with a separator
symbol s, <symbol*; separator=s> can be used. The following tem-
plate productions illustrate these features, adding function calls and
definitions to the expression language.

templates
FunctionDef.Function = <
function <ID>(<ID*; separator=", ">) = <Exp>

>
Exp.Call = <<ID>(<Exp*; separator=", ">)>

Disambiguation
Grammars can be extended with disambiguation rules and annota-
tions to express language characteristics such as associativity and
operator precedence. In our running example, multiplication has a
higher precedence than addition. Whereas in SDF [13] priorities
are specified declaratively by copying the relevant productions and
ordering them, separated by >-symbols, we add the option of spec-
ifying priorities through references to the relevant productions, so
as to eliminate redundancy. The difference is shown in Figure 3.

templates
Exp.Plus =

<<Exp> + <Exp>> {left}
Exp.Times =

<<Exp> * <Exp>> {left}
context-free priorities
Exp.Times >
Exp.Plus

(a) Associativity and priorities with
templates and references

context-free syntax
Exp "+" Exp -> Exp

{left, cons("Plus")}
Exp "*" Exp -> Exp

{left, cons("Times")}
context-free priorities

Exp "*" Exp -> Exp >
Exp "+" Exp -> Exp

(b) Equivalent associativity and pri-
orities in SDF

Figure 3: Expression grammar

lexical syntax
ID = [A-Z] [A-Za-z0-9]*
INT = [0-9]+
LAYOUT = [\ \t\r\n]

(a) Lexical productions

lexical restrictions
ID -/- [A-Za-z0-9]
INT -/- [0-9]

context-free restrictions
LAYOUT? -/- [\ \t\r\n]

(b) Lexical and context-free restric-
tions

Figure 4: EBNF-ordered productions

Lexical Syntax
A part of syntax definitions we have not discussed so far is lex-
ical syntax. Lexical syntax elements such as INT and ID in our
expression language, are, unlike the context-free productions we
discussed so far, generally specified using a form of regular expres-
sions. In the abstract representation they are usually represented
as simple strings, making unparsing trivial. For consistency, lexi-
cal productions can be specified in symbol-first order, as shown in
in Figure 4a. The definition of the body of lexical productions is
shared with SDF [8, 22]. Both lexical and context-free syntax can
be disambiguated using restriction sections in SDF [13], a construct
that we inherit in our syntax specification language (Figure 4b).

The syntax of the template language is summarized in Figure 5.
We proceed with a description of the mapping from syntax tem-
plates to SDF, completion templates, and pretty printing rules.

4. GENERATING TEMPLATE-BASED
EDITORS

Generating SDF
Syntax templates closely match context-free syntax in SDF. Specif-
ically, to go from a syntax template to an SDF production, all layout
is discarded: in SDF, there is implicit LAYOUT? between all symbols
in a context-free production. The remaining elements (literals and
placeholders) are converted in-order to their respective SDF equiv-
alents. Layout is trimmed from the separator option of list place-
holders. An example of this transformation is shown in Figure 6.

Generating Completion Templates
Completion templates in Spoofax consist of the following compo-
nents:
• A symbol that indicates the context in which the template is

applicable.
• A string, which is displayed in the completion pop-up, and is

used to filter the list of proposals.
• A list of elements of the completion template. Each element

is either a string, possibly including line breaks and inden-
tation, a placeholder, or the special (cursor) directive. This
last directive indicates the location of the cursor after the user

Productions
Sort = <e∗> Template with elements e∗
Sort.Cons = <e∗> Template with elements e∗
Placeholders
<A> Placeholder (1)
<A?> Optional placeholder (0..1)
<A*> Repetition (0..n)
<A+> Repetition (1..n)
<A*; separator="\n"> Repetition with separator
<A; text="hi"> Placeholder with replacement text

for completion template
<A; hide> Placeholder hidden from comple-

tion template
Priority specification
context-free priorities
{left:

Exp.Times Exp.Over} >
{left:

Exp.Plus Exp.Minus}

References to template produc-
tions

Lexical syntax
lexical syntax
ID = [A-Za-z]+

Lexical productions in EBNF-
order

Figure 5: Summary of the template language syntax

Exp.Plus = <<Exp> + <Exp>>

⇓ generate SDF ⇓

Exp "+" Exp -> Exp {cons("Plus")}

Figure 6: Generate an SDF production from a syntax template

has cycled through all placeholders. A placeholder consists
of an initial replacement text, and an optional symbol, which
is used to display a list of syntactic completions applicable at
the position of that placeholder, as soon as the user switches
to this placeholder.
• A set of annotations. The only relevant annotation in use is

(blank), which constrains the completion template to blank
lines.

We do not perform a linear transformation from syntax tem-
plates to completion templates, as we did for the grammar. The
reason is best illustrated with Figure 7. For certain language el-
ements, we may want to factor out repeated constructs, such as
the <Statement*; separator="\n"> placeholder in the example. The
user of the editor, however, should not be exposed to such imple-
mentation details. In particular, the user should not be forced to
repeatedly apply completion to fill in required parts of a language
construct: those required parts should be inserted into the program
text as soon as the completion proposal for the language construct
is applied.

Therefore, we substitute the referred template for each place-
holder with a multiplicity of one and higher (<A> and <A+>), un-
less the placeholder refers to the containing template. In the step
expand template of the example in Figure 7, the <MetaAnnos> and
<Statements> placeholders are expanded.

The simplify template step removes placeholders with the hide

option, and processes placeholders that can generate the empty
string (<A?> and <A*>). Call those placeholders ε-placeholders. These
placeholders are treated differently depending on their location in
the template. The (cursor) directive is substituted for the first

FunctionDef.Function = <
<MetaAnnos>
function <QId>(<FArg*; separator=", ">) : <Type> {

<Statements>
}

>
MetaAnnos = <<MetaAnno*; separator="\n", hide>>
Statements = <<Statement*; separator="\n">>

⇓ expand template ⇓

FunctionDef.Function = <
<MetaAnno*; separator="\n", hide>
function <ID:QId>(<FArg*; separator=", ">) : <ID:Type> {
<Statement*; separator="\n">

}
>

⇓ simplify template ⇓

FunctionDef.Function = <
function <ID:QId>(<:FArg>) : <ID:Type> {
(cursor)

}
>

⇓ generate completion template ⇓

completion template FunctionDef: "function ID() : ID { }" =
"function " <ID:QId> "(" <:FArg> ") : " <ID:Type>

" {\n\t" (cursor) "\n}" (blank)

Figure 7: Generate completion templates from syntax templates

line that consists of a single ε-placeholder. Further instances of
ε-placeholders on a single line are ignored: we expect the user
to retrigger completion when they desire to insert a template at
these positions. In Figure 7, <MetaAnno*; separator="\n", hide>

is removed, and <Statement*; separator="\n"> is replaced by the
(cursor) directive. Remaining ε-placeholders are replaced by an
empty placeholder in the completion template that can be expanded
to a single occurrence of one of the referred templates. In Figure 7
this is demonstrated by the replacement of <FArg*; separator=", ">

by <:FArg>.

Generating Pretty Printing Rules
A simple set of recursive, bottom-up pretty printing rules can be
generated from syntax templates. We generate these rules in the
program transformation language Stratego. It can be seen in Fig-
ure 8 that a pretty printing rule consists of a number of components.
The name of the rule, pp-Statement, is composed from the name
of the symbol. The rule matches the constructor IfThen with two
arguments. The number of arguments is equal to the number of
placeholders in the syntax template.

When the rule matches, child nodes are pretty printed by (recur-
sively) invoking (other) pretty printing rules. Then, the text for all
elements of the template is concatenated, while the text for child
nodes is indented by the amount the respective placeholder is in-
dented in the syntax template.

5. RUNTIME SUPPORT FOR TEMPLATE-
BASED EDITORS

For template-based editing to be effective, only contextually rel-
evant templates should be shown. Pure structure editors achieve
this based on the currently selected placeholder. To achieve the
same in textual editors, the editor must be aware of the syntactic
category of the text at the cursor location at any time. The pro-

Statement.IfThen = <
if <Exp> then

<Statement*; separator="\n">
end

>

⇓ generate Stratego pretty printing rule ⇓

pp-Statement:
IfThen(a, b) -> zz
with a’ := <pp-Exp> a

; b’ := <map(pp-Statement); separate-by(|"\n")> b
; zz := <concat-strings> ["if ", a’, " then\n",

<indent(|" ")> b’, "\nend"]

Figure 8: Generate Stratego pretty printer from syntax templates

vided completions must be accurate: all applicable templates must
be included, and no inapplicable templates may be included. In
this section we describe an approach for gathering an accurate list
of templates in a parser-based editor.

Determining the syntactic category at the cursor location in a
language-agnostic fashion is not trivial. If possible, changes to gen-
erated parsers to support this facility should be provided. In addi-
tion, syntax errors need to be taken into consideration; the editor
must be able to determine what type of template should be inserted
even when a program is edited and is in a syntactically incorrect
state.

Original Implementation
The solution originally implemented in Spoofax first creates a mod-
ified program text that includes a marker at the cursor location.
The marker matches the syntax for identifiers, and is unlikely to
be present anywhere else in the program text. The modified pro-
gram text is then parsed, after which the AST is searched for the
marker. Spoofax infers the symbols that should have been allowed
at the position of the cursor from the token stream, and meta data
attached to AST nodes.

The interaction between the involved components is a problem
with this implementation. When the modified program text is parsed,
and it has parse errors, error recovery gets involved. Unless com-
pletion is invoked at a position where an identifier is allowed, there
will be parse errors. The error recovery algorithm in the SGLR
parser used in Spoofax attempts to get the parser back on track
by performing a minimum number of token insertions and/or re-
movals. As such, it may remove the marker, or insert punctuation
that pushes the marker into another language construct.

One solution is to make the parser aware of the cursor location,
and report the allowable syntactic categories at that character offset
during parsing. This solution is specific to SGLR, and needs to be
re-implemented in every other parser. We look for a more generic
and less complex solution.

Our Solution
We apply a grammar generation technique that adds a production
CONTENTCOMPLETE -> X {cons("COMPLETION-X")} for every symbol X, where
CONTENTCOMPLETE is a symbol that recognizes the inserted marker text,
including surrounding identifier characters. When the program text
with marker is parsed, the marker can be parsed as every symbol
allowed at its location. Because we encode the name of the symbol
in the AST constructor, the editor runtime knows all symbols al-
lowed at the position of the marker. The set of symbols is then used
to select appropriate completion templates to display to the user.

Figure 9: A Dutch if-else statement expressed in SDF (top),
and expressed in the template language (bottom)

6. EVALUATION
We investigated whether the template language is sufficiently ex-

pressive to describe the syntax of existing DSLs. The requirements
are that the syntax definition generated from the syntax templates
must be equivalent to the original syntax definition. The comple-
tion templates must behave as was intended with the design of the
template language, and the pretty printer must be able to output
reasonably pretty code.

To perform the evaluations we converted the SDF grammar of
the DSL into unformatted syntax templates. These unformatted
syntax templates were then manually formatted to match the exist-
ing specification of the DSL. The syntax definition using formatted
templates was then compiled into a Spoofax editor for the language,
which we then used to try completion and to pretty print a number
of DSL programs.

6.1 A Tax-Benefit Language
We converted the tax-benefit DSL from Cheetah to the template

language. The DSL implements a temporal database [20] on top of
.NET services and relational databases, while hiding the accidental
complexity of those aspects from the user. Relevant to this evalu-
ation is that the DSL is very verbose. It contains many specialized
statements and expressions, many of which are Dutch sentences,
with gaps where other statements or expressions can be inserted.

To acquire a syntax specification in the template language, we re-
targeted our initial conversion. The DSL models could be parsed
using the template language syntax specification without modifi-
cation. Additionally, we got completion templates and a working
pretty printer “for free.” The template languages reduced the syntax
definition from 2101 (only SDF) to 997 lines. This large reduction
can be attributed to the lexical restrictions the template lan-
guage automatically generates for all keywords in each syntax tem-
plate, in combination with the large number of keywords in the lan-
guage, and the fact that, as a result of the conversion from Cheetah,
each of the 129 language constructs is stored in a separate file. An
example of a language construct defined in the template language,
versus the same language construct defined in SDF, is shown in
Figure 9.

6.2 The Mobl Web Programming Language
Mobl [9] is a DSL for the construction of mobile web applica-

tions. It features an extensive standard library, declarative speci-

fication of user interface, static type checking, and embedding of
Javascript, CSS styling rules and HTML. We created a clone of the
syntax of the Mobl language in our template language, using a con-
verter in the Spoofax SDF editor. Within a few hours we formatted
the 343 unformatted syntax templates, by inserting line breaks and
indentation into 64 multi-line language constructs, and adapting
layout throughout the language using search-replace. One produc-
tion had to be manually refactored to three separate productions,
because it employed the alternative operator, which is deprecated
in SDF, and (by design) not present in the template language.

After some minor fixes the syntax templates resulted in a syn-
tax definition that could be used to parse and pretty print all ex-
ample code included with the Mobl project, although for nested
if-else statements we hit limitations with regards to the place-
ment of braces. Overall, the template language reduced the com-
bined size of the syntax specifications from 1562 lines to 1162
lines, while delivering a complete pretty printer, and a complete
set of completion templates.

The grammar of the Mobl language as specified by our tem-
plate language is slightly more permissive than the original Mobl
grammar, due to keywords that contain special characters, such as
@<javascript> and @doc, which get tokenized by the SDF gener-
ator to "@<" "javascript" ">" and "@" "doc", so that layout is allowed
between these tokens. We will have to revisit this design decision,
and consider, for example, removing the tokenization, and intro-
ducing a zero-length space character to insert LAYOUT?, to ensure it
is possible to define such keywords in the template language.

Initially, syntactic completion in our evaluation was suboptimal
due to the annotations present in Mobl at the start of many language
constructs. Because the placeholder for these annotations is on a
separate line, completion templates that produce a blank line before
the language construct were generated. This behavior is likely not
expected by the user, because these annotations are rarely used in
Mobl. We corrected this by introducing the hide option to suppress
the placeholders for annotations from the completion templates for
many language constructs. The templates for annotations can be
invoked separately, where desired.

Evaluation of the Runtime Support
We evaluated the runtime support for template-based editors on a
sample program in the Mobl language by triggering completion on
relevant positions in the sample program. Our approach was able
to provide the editor runtime with an accurate and complete set
of symbols on each sample position. The fact that our approach
minimizes the interaction with error recovery likely explains these
promising results.

7. RELATED WORK

Unified Syntax Specifications
There are a number of current syntax specification approaches that
aim to unify the specification of parsing and unparsing.

SYN [3] aims to be one syntax definition language for the spec-
ification of ASTs, lexical analysis, parsing and pretty-printing. Its
notation is similar to BNF, extended with a sublanguage for the
specification of a lexical analyzer, and operators h (horizontal com-
position), hv (inconsistent line breaking), and hov (consistent line
breaking) for the generation of a pretty printer. SYN has been im-
plemented in Standard ML. Because the SYN compiler translates
the syntax definition to input for the tools ML-Lex and ML-Yacc
(ML implementations of the well known UNIX tools lex and yacc),
a syntax definition in SYN faces the limitations of separate scanner
and parser, and LALR(1) parsing.

Extended SDF [15] is an extension of SDF that embeds other
specification languages. An important application of the work is
the embedding of PP pretty printing rules (such as those in Fig-
ure 2c) in SDF attributes. Although this improves the locality of
the different syntax definitions, it does not solve redundancy, as el-
ements of the syntax are present both in the SDF, and in the attached
pretty printing rule.

More recently, Rendel and Ostermann [16] propose partial iso-
morphisms for invertible computation, and use these to implement
a combined parser/pretty printer library in Haskell. Productions are
specified using invertible combinators used for parsing, unparsing,
and abstract syntax (de)construction.

These approaches differ from our approach in their use of ex-
plicit operators that specify layout and formatting. By using tem-
plates, we provide a concise syntax that forgoes the use of operators
and uses plain whitespace instead, while still being sufficiently ex-
pressive for our case study with two complete DSLs. In addition,
they also do not consider completion templates.

Template-Based Editing
Many early language workbenches used a template-based editing
paradigm in structure editors. Examples include Centaur [2] and
the Synthesizer Generator [17]. While these systems faced the
same problem of having to specify both abstract and concrete syn-
tax, they did not have the problem of specifying both a parser and
an unparser.

Hybrid textual/structure editors make it possible to switch to a
text editing mode for a part of a program. Systems used to specify
these editors do have the added dimension of parsing and unpars-
ing, where they need a specification of formatted concrete syntax
and a specification that specifies how to parse concrete syntax inde-
pendent of the layout. While there have been different ways to ad-
dress the issue, there has not been a solution that unifies the specifi-
cation of all syntactic aspects. Examples of hybrid systems include
the Programming System Generator (PSG) [1], PREGMATIC [21],
and the ASF+SDF Meta-Environment [12].

PREGMATIC [21] specifies syntax using as part of attribute gram-
mars. The grammar formalism does not include a formatting spec-
ification: instead, unformatted templates are generated from the
grammar. The user can then edit the layout in those templates to
format them as desired.

The Meta-Environment [12] uses SDF for syntax definition, and
originally used the Generic Syntax-directed Editor (GSE) [4] as a
hybrid editor. Contrary to many earlier structured editors it does not
use pretty printing to convert abstract syntax into concrete syntax.
Instead it maintains a two-way mapping between the text the user
entered and the AST, so that a pretty printer is not needed during
editing, and the user has full control over the layout of the program.

Template-based textual editors have text editing as their principal
mode of operation, but can provide textual templates for editing.
Examples of tools to create these editors include MontiCore [7],
Xtext [5], and our own Spoofax [10]. Each of these systems has
so far used a separate specification of syntax for parsing, pretty
printing, and completion templates. As part of our work we im-
plemented a template language for Spoofax, showing these aspects
can be combined.

8. CONCLUSION
Syntax discoverability has been a crucial advantage of structure

editors for new users of a language. Despite their excellent support
for syntax discoverability, structure editors have not been widely
adopted. Based on immediate parsing and analyses, modern textual
code editors are also increasingly syntax-aware: structure and tex-

tual editors are converging into a new editing paradigm that com-
bines text and templates. In these syntax-aware text editors, syntax
discovery is provided in the form of syntactic completion, which
depends critically on two features of a language workbench: first,
it must be feasible to define and maintain sensible completion pro-
posals for editors, and second, the syntactic completion propos-
als presented to the user must be relevant and complete. Current
text-based languages require redundant specification of the differ-
ent aspects that make up a template-based editor. Evolution of the
language means that maintenance is required of all aspects in order
to maintain completeness and consistency.

This paper addresses the issue of effective specification and im-
plementation of syntax-aware textual editors. First, through unifi-
cation of the specification of syntax, thus addressing the higher risk
of incomplete/incorrect syntax due to redundant specifications. To
accomplish this, we presented the design and implementation of
a specification language that incorporates enough information so
that syntax definition, pretty printer and completion templates can
be generated. Doing so ensures completion templates are complete
and up-to-date, thus improving the discoverability of syntax in the
editor. Second, we describe techniques to accurately determine the
syntactic categories at the cursor location, in order to present a rele-
vant and complete set of completion proposals. We showed that by
applying grammar generation techniques, it is possible to accom-
plish this goal without parser-specific modifications.

9. REFERENCES
[1] R. Bahlke and G. Snelting. The PSG system: From formal

language definitions to interactive programming
environments. ACM Transactions on Programming
Languages and Systems, 8(4):547–576, 1986.

[2] P. Borras, D. Clément, Th. Despeyroux, J. Incerpi, G. Kahn,
B. Lang, and V. Pascual. CENTAUR: The system. In
Proceedings of the third ACM SIGSOFT/SIGPLAN software
engineering symposium on Practical software development
environments, pages 14–24. ACM, 1988.

[3] R. Boulton. Syn: A single language for specifying abstract
syntax trees, lexical analysis, parsing and pretty-printing.
Number 390. University of Cambridge, Computer
Laboratory, 1996.

[4] M. H. H. van Dijk and J. W. C. Koorn. GSE, a generic
syntax-directed editor. Technical Report CS-R9045, Centrum
voor Wiskunde en Informatica (CWI), 1990.

[5] S. Efftinge and M. Voelter. oAW xText: A framework for
textual DSLs. In Workshop on Modeling Symposium at
Eclipse Summit, 2006.

[6] M. Fowler. Language workbenches: The killer-app for
domain specific languages?, 2005.

[7] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and
S. Völkel. Monticore: a framework for the development of
textual domain specific languages. In W. Schäfer, M. B.
Dwyer, and V. Gruhn, editors, 30th International Conference
on Software Engineering (ICSE 2008), Companion Volume,
pages 925–926. ACM, 2008.

[8] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The
syntax definition formalism SDF - reference manual.
SIGPLAN Notices, 24(11):43–75, 1989.

[9] Z. Hemel and E. Visser. Declaratively programming the
mobile web with mobl. In K. Fisher and C. V. Lopes, editors,

Proceedings of the 2011 ACM international conference on
Object oriented programming systems languages and
applications, OOPSLA 2011, pages 695–712. ACM, 2011.

[10] L. C. L. Kats and E. Visser. The Spoofax language
workbench: rules for declarative specification of languages
and IDEs. In W. R. Cook, S. Clarke, and M. C. Rinard,
editors, Proceedings of the 25th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2010, pages
444–463. ACM, 2010.

[11] A. A. Khwaja and J. E. Urban. Syntax-directed editing
environments: Issues and features. In Proceedings of the
1993 ACM/SIGAPP Symposium on Applied Computing,
pages 230–237, 1993.

[12] P. Klint. A meta-environment for generating programming
environments. ACM Transactions on Software Engineering
Methodology, 2(2):176–201, 1993.

[13] P. Klint and E. Visser. Using filters for the disambiguation of
context-free grammars. In Proceedings of the ASMICS
Workshop on Parsing Theory. Tech. Rep. 126–1994,
Dipartimento di Scienze dell’Informazione, Università di
Milano, October 1994.

[14] T. J. Parr. Enforcing strict model-view separation in template
engines. In S. I. Feldman, M. Uretsky, M. Najork, and C. E.
Wills, editors, Proceedings of the 13th international
conference on World Wide Web, WWW 2004, New York, NY,
USA, May 17-20, 2004, pages 224–233. ACM, 2004.

[15] N. Pouillard. Extending SDF. Technical Report 0407,
EPITA, jul 2004.

[16] T. Rendel and K. Ostermann. Invertible syntax descriptions:
unifying parsing and pretty printing. In Proceedings of the
third ACM Haskell symposium on Haskell, pages 1–12.
ACM, 2010.

[17] T. W. Reps and T. Teitelbaum. The synthesizer generator. In
Proceedings of the first ACM SIGSOFT/SIGPLAN software
engineering symposium on Practical software development
environments, pages 42–48. ACM, 1984.

[18] U. Shani. Should program editors not abandon text oriented
commands? SIGPLAN Notices, 18(1):35–41, 1983.

[19] C. Simonyi, M. Christerson, and S. Clifford. Intentional
software. In P. L. Tarr and W. R. Cook, editors, Proceedings
of the 21th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2006, pages 451–464. ACM, 2006.

[20] R. Snodgrass. Temporal databases. IEEE Computer,
19:22–64, 1992.

[21] M. G. J. van den Brand. PREGMATIC - a generator for
incremental programming environments. PhD thesis,
University Nijmegen, 1992.

[22] E. Visser. Syntax Definition for Language Prototyping. PhD
thesis, University of Amsterdam, September 1997.

[23] M. Voelter and K. Solomatov. Language modularization and
composition with projectional language workbenches
illustrated with MPS. In M. van den Brand, B. Malloy, and
S. Staab, editors, Software Language Engineering, Third
International Conference, SLE 2010, Lecture Notes in
Computer Science. Springer, 2010.

[24] R. C. Waters. Program editors should not abandon text
oriented commands. SIGPLAN Notices, 17(7):39–46, 1982.

	Introduction
	Background
	Template-Based Syntax Definition
	Generating Template-Based Editors
	Runtime Support for Template-Based Editors
	Evaluation
	A Tax-Benefit Language
	The Mobl Web Programming Language

	Related Work
	Conclusion
	References

