
Data-Flow Analysis

CS4200 | Compiler Construction | January 7, 2021

Jeff Smits & Eelco Visser

Reading Material

The following papers add background, conceptual exposition,
and examples to the material from the slides. Some notation and
technical details have been changed; check the documentation.

3

This paper introduces FlowSpec, the declarative data-flow
analysis specification language in Spoofax. Although the
design of the language described in this paper is still current,
the syntax used is already dated, i.e. the current FlowSpec
syntax in Spoofax is slightly different.

https://doi.org/10.1145/3136014.3136029

SLE 2017

https://doi.org/10.1145/3136014.3136029
https://doi.org/10.1145/3136014.3136029

Journal version of the SLE paper.

This paper introduces FlowSpec, the declarative data-flow
analysis specification language in Spoofax.

https://doi.org/10.1016/j.cola.2019.100924

Journal of Computer Languages 2020

5

Documentation for FlowSpec
at the metaborg.org website.

http://www.metaborg.org/en/latest/source/langdev/meta/lang/flowspec/index.html

http://metaborg.org
http://metaborg.org
http://www.metaborg.org/en/latest/source/langdev/meta/lang/flowspec/index.html
http://www.metaborg.org/en/latest/source/langdev/meta/lang/flowspec/index.html

Data-Flow Analysis

What is Data-Flow Analysis?

Static approximation of runtime behaviour

What is Data-Flow Analysis?

Static approximation of runtime behaviour
- What has or will be computed

What is Data-Flow Analysis?

Available Expressions

let

 var x : int ":= a + b

 var y : int ":= a * b

 in

 while y > a + b then

 (

 a ":= a + 1;

 x ":= a + b

)

end

Available Expressions

let

 var x : int ":= a + b

 var y : int ":= a * b

 in

 while y > a + b then

 (

 a ":= a + 1;

 x ":= a + b

)

end

- a + b is already computed when you get to the condition
- There is no need to compute it again

Live Variables

x ":= 2;

y ":= 4;

x ":= 1;

if y > x then

 z ":= y

else

 z ":= y * y;

x ":= z

Live Variables

x ":= 2;

y ":= 4;

x ":= 1;

if y > x then

 z ":= y

else

 z ":= y * y;

x ":= z

The first value of x is never observed,
because it isn’t read after the assignment

Static approximation of runtime behaviour
- What has or will be computed

What is Data-Flow Analysis?

Static approximation of runtime behaviour
- What has or will be computed
- What extra invariants do some data adhere to

What is Data-Flow Analysis?

Flow-Sensitive Types

void hello(String? name) {

 if (is String name) {

 "// name is of type String here

 print("Hello, ``name``!");

 }

 else {

 print("Hello, world!");

 }

}

Flow-Sensitive Types

void hello(String? name) {

 if (is String name) {

 "// name is of type String here

 print("Hello, ``name``!");

 }

 else {

 print("Hello, world!");

 }

}

- Ceylon (https://ceylon-lang.org/)
- Union and intersection types
- String? ≡ String | Null
- is like Java’s instanceof
- General name: path-sensitive data-flow analysis

https://ceylon-lang.org/
https://ceylon-lang.org/

Static approximation of runtime behaviour
- What has or will be computed
- What extra invariants do some data adhere to

What is Data-Flow Analysis?

Static approximation of runtime behaviour
- What has or will be computed
- What extra invariants do some data adhere to
- Data dependence between data/variables where the data lives

What is Data-Flow Analysis?

Reaching Definitions

let

 var x : int ":= 5

 var y : int ":= 1

 in

 while x > 1 do

 (

 y ":= x * 2;

 x ":= y - 1

)

end

- The inverse relation of live variables
- RD gives us the possible origins of the current value of a variable

Reaching Definitions

let

 var x : int ":= 5

 var y : int ":= 1

 in

 while x > 1 do

 (

 y ":= x * 2;

 x ":= y - 1

)

end

x↦2
x↦2;y↦3

x↦2,8;y↦3,7

x↦2,8;y↦7
x↦8;y↦7

- Analysis result is a multi-map (shown here after each statement)
- Propagate information along the control-flow graph

1
2
3
4
5
6
7
8
9

10

Reaching Definitions

let

 var x : int ":= 5

 var y : int ":= 1

 in

 while x > 1 do

 (

 y ":= x * 2;

 x ":= y - 1

)

end

x↦2
x↦2;y↦3

x↦2,8;y↦3,7

x↦2,8;y↦7
x↦8;y↦7

- Analysis result is a set of pairs (shown here after each statement)
- Propagate information along the control-flow graph

1
2
3
4
5
6
7
8
9

10

{(x,2)}
{(x,2) (y,3)}

{(x,2) (x,8) (y,3) (y,7)}

{(x,2) (x,8) (y,7)}
{(x,8) (y,7)}

Control-Flow

Control-Flow

What is Control-Flow?

Control-Flow

What is Control-Flow?
- “Order of evaluation”

Control-Flow

What is Control-Flow?
- “Order of evaluation”

Discuss a series of example programs

Control-Flow

What is Control-Flow?
- “Order of evaluation”

Discuss a series of example programs
- What is the control flow?

Control-Flow

What is Control-Flow?
- “Order of evaluation”

Discuss a series of example programs
- What is the control flow?
- What constructs in the program determine that?

Control-Flow

What is Control-Flow?

function id(x) { return x; }
id(4); id(true);

What is Control-Flow?

function id(x) { return x; }
id(4); id(true);

Function calls

What is Control-Flow?

function id(x) { return x; }
id(4); id(true);

- Calling a function passes control to that function

- A return passes control back to the caller

Function calls

What is Control-Flow?

if (c) { a = 5 } else { a = "four" }

What is Control-Flow?

if (c) { a = 5 } else { a = "four" }

Branching

What is Control-Flow?

if (c) { a = 5 } else { a = "four" }

- Control is passed to one of the two branches

- This is dependent on the value of the condition

Branching

What is Control-Flow?

while (c) { a = 5 }

What is Control-Flow?

while (c) { a = 5 }

Looping

What is Control-Flow?

while (c) { a = 5 }

- Control is passed to the loop body depending on the condition

- After the body we start over

Looping

What is Control-Flow?

function1(a);
function2(b);

What is Control-Flow?

function1(a);
function2(b);

Sequence

What is Control-Flow?

function1(a);
function2(b);

- No conditions or anything complicated

- But still order of execution

Sequence

What is Control-Flow?

distance = distance + 1;

What is Control-Flow?

distance = distance + 1;

Reads and Writes

What is Control-Flow?

distance = distance + 1;

- The expression needs to be evaluated, before we can save its result 

Reads and Writes

What is Control-Flow?

int i = 2;
int j = (i=3) * i;

What is Control-Flow?

int i = 2;
int j = (i=3) * i;

Expressions & side-effects

What is Control-Flow?

int i = 2;
int j = (i=3) * i;

- Order in sub-expressions is usually undefined

- Side-effects make sub-expression order relevant

Expressions & side-effects

Kinds of Control-Flow

- Sequential	 statements

Kinds of Control-Flow

- Sequential	 statements
- Conditional	 if / switch / case

Kinds of Control-Flow

- Sequential	 statements
- Conditional	 if / switch / case
- Looping	 while / do while / for / foreach / loop

Kinds of Control-Flow

- Sequential	 statements
- Conditional	 if / switch / case
- Looping	 while / do while / for / foreach / loop
- Exceptions	 throw / try / catch / finally

Kinds of Control-Flow

- Sequential	 statements
- Conditional	 if / switch / case
- Looping	 while / do while / for / foreach / loop
- Exceptions	 throw / try / catch / finally
- Continuations	 call/cc

Kinds of Control-Flow

- Sequential	 statements
- Conditional	 if / switch / case
- Looping	 while / do while / for / foreach / loop
- Exceptions	 throw / try / catch / finally
- Continuations	 call/cc
- Async-await	 threading

Kinds of Control-Flow

- Sequential	 statements
- Conditional	 if / switch / case
- Looping	 while / do while / for / foreach / loop
- Exceptions	 throw / try / catch / finally
- Continuations	 call/cc
- Async-await	 threading
- Coroutines / Generators	 yield

Kinds of Control-Flow

- Sequential	 statements
- Conditional	 if / switch / case
- Looping	 while / do while / for / foreach / loop
- Exceptions	 throw / try / catch / finally
- Continuations	 call/cc
- Async-await	 threading
- Coroutines / Generators	 yield
- Dispatch	 function calls / method calls

Kinds of Control-Flow

- Sequential	 statements
- Conditional	 if / switch / case
- Looping	 while / do while / for / foreach / loop
- Exceptions	 throw / try / catch / finally
- Continuations	 call/cc
- Async-await	 threading
- Coroutines / Generators	 yield
- Dispatch	 function calls / method calls
- Loop jumps	 break / continue
- ... many more ...	

Kinds of Control-Flow

Why Control-Flow?

Shorter code
- No need to repeat the same statement 10 times

Why Control-Flow?

Shorter code
- No need to repeat the same statement 10 times

Parametric code
- Extract reusable patterns
- Let user decide repetition amount

Why Control-Flow?

Shorter code
- No need to repeat the same statement 10 times

Parametric code
- Extract reusable patterns
- Let user decide repetition amount

Expressive power
- Playing with Turing Machines

Why Control-Flow?

Shorter code
- No need to repeat the same statement 10 times

Parametric code
- Extract reusable patterns
- Let user decide repetition amount

Expressive power
- Playing with Turing Machines

Reason about program execution
- What happens when?
- In what order?

Why Control-Flow?

Control-Flow and Language Design

Imperative programming
- Explicit control-flow constructs

Control-Flow and Language Design

Imperative programming
- Explicit control-flow constructs

Declarative programming

Control-Flow and Language Design

Imperative programming
- Explicit control-flow constructs

Declarative programming
- What, not how

Control-Flow and Language Design

Imperative programming
- Explicit control-flow constructs

Declarative programming
- What, not how
- Less explicit control-flow

Control-Flow and Language Design

Imperative programming
- Explicit control-flow constructs

Declarative programming
- What, not how
- Less explicit control-flow
- More options for compilers to choose order

Control-Flow and Language Design

Imperative programming
- Explicit control-flow constructs

Declarative programming
- What, not how
- Less explicit control-flow
- More options for compilers to choose order
- Great if your compiler is often smarter than the programmer

Control-Flow and Language Design

Separation of Concerns in Data-Flow Analysis

Representation
- Represent control-flow of a program

Separation of Concerns in Data-Flow Analysis

Representation
- Represent control-flow of a program
- Conduct and represent results of data-flow analysis

Separation of Concerns in Data-Flow Analysis

Representation
- Represent control-flow of a program
- Conduct and represent results of data-flow analysis

Declarative Rules
- To define control-flow of a language
- To define data-flow of a language

Separation of Concerns in Data-Flow Analysis

Representation
- Represent control-flow of a program
- Conduct and represent results of data-flow analysis

Declarative Rules
- To define control-flow of a language
- To define data-flow of a language

Language-Independent Tooling
- Data-Flow Analysis
- Errors/Warnings
- Code completion
- Refactoring
- Optimisation
- …

Separation of Concerns in Data-Flow Analysis

Control-Flow Graphs

What is a Control-Flow Graph?

A control flow graph (CFG) in computer science is a representation,
using graph notation, of all paths that might be traversed through a
program during its execution.

https://en.wikipedia.org/wiki/Control_flow_graph

https://en.wikipedia.org/wiki/Control_flow_graph
https://en.wikipedia.org/wiki/Control_flow_graph

Control-Flow Graph Example

let

 var x : int ":= a + b

 var y : int ":= a * b

 in

 while y > a + b do

 (

 a ":= a + 1;

 x ":= a + b

)

end

Control-Flow Graph Example

y > a + b

var y : int := a * b

var x : int := a + b

a := a + 1

x := a + b

let

 var x : int ":= a + b

 var y : int ":= a * b

 in

 while y > a + b do

 (

 a ":= a + 1;

 x ":= a + b

)

end

Basic Blocks

var x : int := a + b
var y : int := a * b

y > a + b

a := a + 1
x := a + b

let

 var x : int ":= a + b

 var y : int ":= a * b

 in

 while y > a + b do

 (

 a ":= a + 1;

 x ":= a + b

)

end

Control Flow Graphs

Nodes
- Usually innermost statements and expressions
- Or blocks for consecutive statements (basic blocks)

Control Flow Graphs

Nodes
- Usually innermost statements and expressions
- Or blocks for consecutive statements (basic blocks)

Edges
- Back edges: show loops
- Splits: conditionally split the control flow
- Merges: combine previously split control flow

Control Flow Graphs

Equivalent to Unstructured Control-Flow

 a ← 0

L1: b ← a + 1

 c ← c + b

 a ← 2 * b

 if a < N goto L1

 return c

a ← 0

b ← a + 1

c ← c + b

a ← 2 * b

a < N

return c

Representation
- Represent control-flow of a program

- Conduct and represent results of data-flow analysis

Declarative Rules
- To define control-flow of a language

- To define data-flow of a language

Language-Independent Tooling
- Data-Flow Analysis

- Errors/Warnings

- Code completion

- Refactoring

- Optimisation

- …

Separation of Concerns in Data-Flow Analysis

Representation
-

- Conduct and represent results of data-flow analysis

Declarative Rules
- To define control-flow of a language

- To define data-flow of a language

Language-Independent Tooling
- Data-Flow Analysis

- Errors/Warnings

- Code completion

- Refactoring

- Optimisation

- …

Separation of Concerns in Data-Flow Analysis

Control Flow Graphs (CFGs)

Data-Flow

Data-Flow

What is Data-Flow?

Data-Flow

What is Data-Flow?
- Possible values (data) that flow through the program

Data-Flow

What is Data-Flow?
- Possible values (data) that flow through the program
- Relations between those data (data dependence)

Data-Flow

What is Data-Flow?
- Possible values (data) that flow through the program
- Relations between those data (data dependence)

Discuss a series of example programs

Data-Flow

What is Data-Flow?
- Possible values (data) that flow through the program
- Relations between those data (data dependence)

Discuss a series of example programs
- What is wrong or can be optimised?

Data-Flow

What is Data-Flow?
- Possible values (data) that flow through the program
- Relations between those data (data dependence)

Discuss a series of example programs
- What is wrong or can be optimised?
- What is the flow we can use for this?

Data-Flow

What is Data-Flow?
- Possible values (data) that flow through the program
- Relations between those data (data dependence)

Discuss a series of example programs
- What is wrong or can be optimised?
- What is the flow we can use for this?
- What would the data-flow information look like?

Data-Flow

What is wrong here?

public int ComputeFac(int num) {

 return num;

 int num_aux;

 if (num < 1)

 num_aux = 1;

 else

 num_aux = num * this.ComputeFac(num-1);

 return num_aux;

}

What is wrong here?

public int ComputeFac(int num) {

 return num;

 int num_aux;

 if (num < 1)

 num_aux = 1;

 else

 num_aux = num * this.ComputeFac(num-1);

 return num_aux;

}

Dead code (control-flow)

What is wrong here?

public int ComputeFac(int num) {

 return num;

 int num_aux;

 if (num < 1)

 num_aux = 1;

 else

 num_aux = num * this.ComputeFac(num-1);

 return num_aux;

}

- Most of the code is never reached because of the early return

- This is usually considered an error by compilers

Dead code (control-flow)

What is “wrong” here?

x ":= 2;

y ":= 4;

x ":= 1;

"// x and y used later

What is “wrong” here?

x ":= 2;

y ":= 4;

x ":= 1;

"// x and y used later

Dead code (data-flow)

What is “wrong” here?

x ":= 2;

y ":= 4;

x ":= 1;

"// x and y used later

- The first value of x is never observed

- This is sometimes warned about by compilers

Dead code (data-flow)

What is “wrong” here?

x ":= 2;

y ":= 4;

x ":= 1;

"// x and y used later

- The first value of x is never observed

- This is sometimes warned about by compilers

Dead code (data-flow)

Live variable analysis

What is suboptimal here?

let

 var x : int ":= a + b

 var y : int ":= a * b

 in

 if y > a + b then

 (

 a ":= a + 1;

 x ":= a + b

)

end

What is suboptimal here?

let

 var x : int ":= a + b

 var y : int ":= a * b

 in

 if y > a + b then

 (

 a ":= a + 1;

 x ":= a + b

)

end

Common subexpression elimination

What is suboptimal here?

let

 var x : int ":= a + b

 var y : int ":= a * b

 in

 if y > a + b then

 (

 a ":= a + 1;

 x ":= a + b

)

end

- a + b is already computed when you get to the condition

- There is no need to compute it again

Common subexpression elimination

What is suboptimal here?

let

 var x : int ":= a + b

 var y : int ":= a * b

 in

 if y > a + b then

 (

 a ":= a + 1;

 x ":= a + b

)

end

- a + b is already computed when you get to the condition

- There is no need to compute it again

Common subexpression elimination

Available expression analysis

What is suboptimal here?

for i ":= 1 to 100 do

 (

 x[i] ":= y[i];

 if w > 0 then

 y[i] ":= 0

)

What is suboptimal here?

for i ":= 1 to 100 do

 (

 x[i] ":= y[i];

 if w > 0 then

 y[i] ":= 0

)

Loop unswitching

What is suboptimal here?

for i ":= 1 to 100 do

 (

 x[i] ":= y[i];

 if w > 0 then

 y[i] ":= 0

)

- The if condition is not dependent on i, x or y

- Still it is checked in the loop, which is slowing the loop

Loop unswitching

What is suboptimal here?

for i ":= 1 to 100 do

 (

 x[i] ":= y[i];

 if w > 0 then

 y[i] ":= 0

)

- The if condition is not dependent on i, x or y

- Still it is checked in the loop, which is slowing the loop

Loop unswitching

Data-dependence analysis

Representation
-

- Conduct and represent results of data-flow analysis

Declarative Rules
- To define control-flow of a language

- To define data-flow of a language

Language-Independent Tooling
- Data-Flow Analysis

- Errors/Warnings

- Code completion

- Refactoring

- Optimisation

- …

Separation of Concerns in Data-Flow Analysis

Control Flow Graphs (CFGs)

Representation
-

- Conduct and represent results of data-flow analysis

Declarative Rules
- To define control-flow of a language

- To define data-flow of a language

Language-Independent Tooling
- Data-Flow Analysis

- Errors/Warnings

- Code completion

- Refactoring

- Optimisation

- …

Separation of Concerns in Data-Flow Analysis

Control Flow Graphs (CFGs)
Data-flow information on CFG nodes

Representation
-

- Conduct and represent results of data-flow analysis

Declarative Rules
- To define control-flow of a language

- To define data-flow of a language

Language-Independent Tooling
- Data-Flow Analysis

- Errors/Warnings

- Code completion

- Refactoring

- Optimisation

- …

Separation of Concerns in Data-Flow Analysis

Control Flow Graphs (CFGs)

A domain-specific meta-language for Spoofax: FlowSpec

Data-flow information on CFG nodes

Tiger in FlowSpec

Control-Flow Rules

Map abstract syntax to control-flow (sub)graphs

Control-Flow Rules

Map abstract syntax to control-flow (sub)graphs
- Match an AST pattern

Control-Flow Rules

Map abstract syntax to control-flow (sub)graphs
- Match an AST pattern
- List all CFG edges of that AST

Control-Flow Rules

Map abstract syntax to control-flow (sub)graphs
- Match an AST pattern
- List all CFG edges of that AST
- Mark subtrees as CFG nodes

Control-Flow Rules

Map abstract syntax to control-flow (sub)graphs
- Match an AST pattern
- List all CFG edges of that AST
- Mark subtrees as CFG nodes
- Or splice in their control-flow subgraph

Control-Flow Rules

Map abstract syntax to control-flow (sub)graphs
- Match an AST pattern
- List all CFG edges of that AST
- Mark subtrees as CFG nodes
- Or splice in their control-flow subgraph
- Use special “context” nodes to connect subgraph to outside graph

Control-Flow Rules

Control-Flow Graphs in FlowSpec
FlowSpec Example program

x ":= 1;

if y > x then

 z ":= y;

else

 z ":= y * y;

y ":= a * b;

while y > a + b do

 (a ":= a + 1;

 x ":= a + b)

root Mod(s) =

 start "-> s,

 s "-> end

Control-Flow Graphs in FlowSpec
FlowSpec Example program

x ":= 1;

if y > x then

 z ":= y;

else

 z ":= y * y;

y ":= a * b;

while y > a + b do

 (a ":= a + 1;

 x ":= a + b)

root Mod(s) =

 start "-> s,

 s "-> end

Control-Flow Graphs in FlowSpec

start

end

FlowSpec Example program

x ":= 1;

if y > x then

 z ":= y;

else

 z ":= y * y;

y ":= a * b;

while y > a + b do

 (a ":= a + 1;

 x ":= a + b)

root Mod(s) =

 start "-> s,

 s "-> end

root Mod(s) =

 start "-> s "-> end

Control-Flow Graphs in FlowSpec

start

end

FlowSpec Example program

x ":= 1;

if y > x then

 z ":= y;

else

 z ":= y * y;

y ":= a * b;

while y > a + b do

 (a ":= a + 1;

 x ":= a + b)

a@Assign(_, _) =

 entry "-> node a "-> exit

root Mod(s) =

 start "-> s,

 s "-> end

root Mod(s) =

 start "-> s "-> end

Control-Flow Graphs in FlowSpec

start

end

FlowSpec Example program

x ":= 1;

if y > x then

 z ":= y;

else

 z ":= y * y;

y ":= a * b;

while y > a + b do

 (a ":= a + 1;

 x ":= a + b)

a@Assign(_, _) =

 entry "-> node a "-> exit

root Mod(s) =

 start "-> s,

 s "-> end

root Mod(s) =

 start "-> s "-> end

Control-Flow Graphs in FlowSpec

start

end

FlowSpec Example program

x ":= 1;

if y > x then

 z ":= y;

else

 z ":= y * y;

y ":= a * b;

while y > a + b do

 (a ":= a + 1;

 x ":= a + b)

a@Assign(_, _) =

 entry "-> node a "-> exit
Assign(_, _) =

 entry "-> this "-> exit

root Mod(s) =

 start "-> s,

 s "-> end

root Mod(s) =

 start "-> s "-> end

Control-Flow Graphs in FlowSpec

start

end

FlowSpec Example program

x ":= 1;

if y > x then

 z ":= y;

else

 z ":= y * y;

y ":= a * b;

while y > a + b do

 (a ":= a + 1;

 x ":= a + b)

a@Assign(_, _) =

 entry "-> node a "-> exit
Assign(_, _) =

 entry "-> this "-> exit
node Assign(_, _)

root Mod(s) =

 start "-> s,

 s "-> end

root Mod(s) =

 start "-> s "-> end

Control-Flow Graphs in FlowSpec

start

end

FlowSpec Example program

x ":= 1;

if y > x then

 z ":= y;

else

 z ":= y * y;

y ":= a * b;

while y > a + b do

 (a ":= a + 1;

 x ":= a + b)

a@Assign(_, _) =

 entry "-> node a "-> exit
Assign(_, _) =

 entry "-> this "-> exit
node Assign(_, _)

Seq(s1, s2) =

 entry "-> s1 "-> s2 "-> exit

root Mod(s) =

 start "-> s,

 s "-> end

root Mod(s) =

 start "-> s "-> end

Control-Flow Graphs in FlowSpec

start

end

FlowSpec Example program

x ":= 1;

if y > x then

 z ":= y;

else

 z ":= y * y;

y ":= a * b;

while y > a + b do

 (a ":= a + 1;

 x ":= a + b)

a@Assign(_, _) =

 entry "-> node a "-> exit
Assign(_, _) =

 entry "-> this "-> exit
node Assign(_, _)

Seq(s1, s2) =

 entry "-> s1 "-> s2 "-> exit

root Mod(s) =

 start "-> s,

 s "-> end

root Mod(s) =

 start "-> s "-> end

Control-Flow Graphs in FlowSpec

start

end

FlowSpec Example program

x ":= 1;

if y > x then

 z ":= y;

else

 z ":= y * y;

y ":= a * b;

while y > a + b do

 (a ":= a + 1;

 x ":= a + b)

a@Assign(_, _) =

 entry "-> node a "-> exit
Assign(_, _) =

 entry "-> this "-> exit
node Assign(_, _)

IfThenElse(c, t, e) =

 entry "-> node c "-> t "-> exit,

 node c "-> e "-> exit

Seq(s1, s2) =

 entry "-> s1 "-> s2 "-> exit

root Mod(s) =

 start "-> s,

 s "-> end

root Mod(s) =

 start "-> s "-> end

Control-Flow Graphs in FlowSpec

start

end

FlowSpec Example program

x ":= 1;

if y > x then

 z ":= y;

else

 z ":= y * y;

y ":= a * b;

while y > a + b do

 (a ":= a + 1;

 x ":= a + b)

a@Assign(_, _) =

 entry "-> node a "-> exit
Assign(_, _) =

 entry "-> this "-> exit
node Assign(_, _)

IfThenElse(c, t, e) =

 entry "-> node c "-> t "-> exit,

 node c "-> e "-> exit

Seq(s1, s2) =

 entry "-> s1 "-> s2 "-> exit

root Mod(s) =

 start "-> s,

 s "-> end

root Mod(s) =

 start "-> s "-> end

Control-Flow Graphs in FlowSpec

start

end

FlowSpec Example program

x ":= 1;

if y > x then

 z ":= y;

else

 z ":= y * y;

y ":= a * b;

while y > a + b do

 (a ":= a + 1;

 x ":= a + b)

a@Assign(_, _) =

 entry "-> node a "-> exit
Assign(_, _) =

 entry "-> this "-> exit
node Assign(_, _)

IfThenElse(c, t, e) =

 entry "-> node c "-> t "-> exit,

 node c "-> e "-> exit

Seq(s1, s2) =

 entry "-> s1 "-> s2 "-> exit

root Mod(s) =

 start "-> s,

 s "-> end

root Mod(s) =

 start "-> s "-> end

Control-Flow Graphs in FlowSpec

start

end

FlowSpec Example program

x ":= 1;

if y > x then

 z ":= y;

else

 z ":= y * y;

y ":= a * b;

while y > a + b do

 (a ":= a + 1;

 x ":= a + b)

a@Assign(_, _) =

 entry "-> node a "-> exit
Assign(_, _) =

 entry "-> this "-> exit
node Assign(_, _)

IfThenElse(c, t, e) =

 entry "-> node c "-> t "-> exit,

 node c "-> e "-> exit

Seq(s1, s2) =

 entry "-> s1 "-> s2 "-> exit

root Mod(s) =

 start "-> s,

 s "-> end

root Mod(s) =

 start "-> s "-> end

Control-Flow Graphs in FlowSpec

start

end

FlowSpec Example program

x ":= 1;

if y > x then

 z ":= y;

else

 z ":= y * y;

y ":= a * b;

while y > a + b do

 (a ":= a + 1;

 x ":= a + b)

a@Assign(_, _) =

 entry "-> node a "-> exit
Assign(_, _) =

 entry "-> this "-> exit
node Assign(_, _)

IfThenElse(c, t, e) =

 entry "-> node c "-> t "-> exit,

 node c "-> e "-> exit

Seq(s1, s2) =

 entry "-> s1 "-> s2 "-> exit

root Mod(s) =

 start "-> s,

 s "-> end

root Mod(s) =

 start "-> s "-> end

Control-Flow Graphs in FlowSpec

start

end

FlowSpec Example program

x ":= 1;

if y > x then

 z ":= y;

else

 z ":= y * y;

y ":= a * b;

while y > a + b do

 (a ":= a + 1;

 x ":= a + b)

a@Assign(_, _) =

 entry "-> node a "-> exit
Assign(_, _) =

 entry "-> this "-> exit
node Assign(_, _)

While(c, b) =

 entry "-> node c "-> b "-> node c,

 node c "-> exit

IfThenElse(c, t, e) =

 entry "-> node c "-> t "-> exit,

 node c "-> e "-> exit

Seq(s1, s2) =

 entry "-> s1 "-> s2 "-> exit

root Mod(s) =

 start "-> s,

 s "-> end

root Mod(s) =

 start "-> s "-> end

Control-Flow Graphs in FlowSpec

start

end

FlowSpec Example program

x ":= 1;

if y > x then

 z ":= y;

else

 z ":= y * y;

y ":= a * b;

while y > a + b do

 (a ":= a + 1;

 x ":= a + b)

a@Assign(_, _) =

 entry "-> node a "-> exit
Assign(_, _) =

 entry "-> this "-> exit
node Assign(_, _)

While(c, b) =

 entry "-> node c "-> b "-> node c,

 node c "-> exit

IfThenElse(c, t, e) =

 entry "-> node c "-> t "-> exit,

 node c "-> e "-> exit

Seq(s1, s2) =

 entry "-> s1 "-> s2 "-> exit

root Mod(s) =

 start "-> s,

 s "-> end

root Mod(s) =

 start "-> s "-> end

Control-Flow Graphs in FlowSpec

start

end

FlowSpec Example program

x ":= 1;

if y > x then

 z ":= y;

else

 z ":= y * y;

y ":= a * b;

while y > a + b do

 (a ":= a + 1;

 x ":= a + b)

a@Assign(_, _) =

 entry "-> node a "-> exit
Assign(_, _) =

 entry "-> this "-> exit
node Assign(_, _)

While(c, b) =

 entry "-> node c "-> b "-> node c,

 node c "-> exit

IfThenElse(c, t, e) =

 entry "-> node c "-> t "-> exit,

 node c "-> e "-> exit

Seq(s1, s2) =

 entry "-> s1 "-> s2 "-> exit

root Mod(s) =

 start "-> s,

 s "-> end

root Mod(s) =

 start "-> s "-> end

Control-Flow Graphs in FlowSpec

start

end

FlowSpec Example program

x ":= 1;

if y > x then

 z ":= y;

else

 z ":= y * y;

y ":= a * b;

while y > a + b do

 (a ":= a + 1;

 x ":= a + b)

a@Assign(_, _) =

 entry "-> node a "-> exit
Assign(_, _) =

 entry "-> this "-> exit
node Assign(_, _)

While(c, b) =

 entry "-> node c "-> b "-> node c,

 node c "-> exit

IfThenElse(c, t, e) =

 entry "-> node c "-> t "-> exit,

 node c "-> e "-> exit

Seq(s1, s2) =

 entry "-> s1 "-> s2 "-> exit

root Mod(s) =

 start "-> s,

 s "-> end

root Mod(s) =

 start "-> s "-> end

Control-Flow Graphs in FlowSpec

start

end

FlowSpec Example program

x ":= 1;

if y > x then

 z ":= y;

else

 z ":= y * y;

y ":= a * b;

while y > a + b do

 (a ":= a + 1;

 x ":= a + b)

a@Assign(_, _) =

 entry "-> node a "-> exit
Assign(_, _) =

 entry "-> this "-> exit
node Assign(_, _)

While(c, b) =

 entry "-> node c "-> b "-> node c,

 node c "-> exit

IfThenElse(c, t, e) =

 entry "-> node c "-> t "-> exit,

 node c "-> e "-> exit

Seq(s1, s2) =

 entry "-> s1 "-> s2 "-> exit

root Mod(s) =

 start "-> s,

 s "-> end

root Mod(s) =

 start "-> s "-> end

Control-Flow Graphs in FlowSpec

start

end

FlowSpec Example program

x ":= 1;

if y > x then

 z ":= y;

else

 z ":= y * y;

y ":= a * b;

while y > a + b do

 (a ":= a + 1;

 x ":= a + b)

a@Assign(_, _) =

 entry "-> node a "-> exit
Assign(_, _) =

 entry "-> this "-> exit
node Assign(_, _)

While(c, b) =

 entry "-> node c "-> b "-> node c,

 node c "-> exit

IfThenElse(c, t, e) =

 entry "-> node c "-> t "-> exit,

 node c "-> e "-> exit

Seq(s1, s2) =

 entry "-> s1 "-> s2 "-> exit

root Mod(s) =

 start "-> s,

 s "-> end

root Mod(s) =

 start "-> s "-> end

Control-Flow Graphs in FlowSpec

start

end

FlowSpec Example program

x ":= 1;

if y > x then

 z ":= y;

else

 z ":= y * y;

y ":= a * b;

while y > a + b do

 (a ":= a + 1;

 x ":= a + b)

Data-Flow Rules

Define effect of control-flow graph nodes

Data-Flow Rules

Define effect of control-flow graph nodes
- Match an AST pattern on one side of a CFG edge

Data-Flow Rules

Define effect of control-flow graph nodes
- Match an AST pattern on one side of a CFG edge
- Propagate the information from the other side of the edge

Data-Flow Rules

Define effect of control-flow graph nodes
- Match an AST pattern on one side of a CFG edge
- Propagate the information from the other side of the edge
- Adapt that information as the effect of the matched CFG node

Data-Flow Rules

Live Variables in FlowSpec

A variable is live if the current value
of the variable may be read further
along in the program

end

start

x ":= 2;

y ":= 4;

x ":= 1;

z ":= x;

x ":= z;

Live Variables in FlowSpec

properties

 live: MaySet(name)

A variable is live if the current value
of the variable may be read further
along in the program

end

start

x ":= 2;

y ":= 4;

x ":= 1;

z ":= x;

x ":= z;

Live Variables in FlowSpec

properties

 live: MaySet(name)

A variable is live if the current value
of the variable may be read further
along in the program

end

start

property rules

x ":= 2;

y ":= 4;

x ":= 1;

z ":= x;

x ":= z;

Live Variables in FlowSpec

properties

 live: MaySet(name)

live(_.end) =

 {}

A variable is live if the current value
of the variable may be read further
along in the program

end

start

property rules

x ":= 2;

y ":= 4;

x ":= 1;

z ":= x;

x ":= z;

Live Variables in FlowSpec

{}

{}

{}

{}

{}

{}

{}

properties

 live: MaySet(name)

live(_.end) =

 {}

A variable is live if the current value
of the variable may be read further
along in the program

end

start

property rules

x ":= 2;

y ":= 4;

x ":= 1;

z ":= x;

x ":= z;

Live Variables in FlowSpec

{}

{}

{}

{}

{}

{}

{}

properties

 live: MaySet(name)

live(Ref(n) "-> next) =

 live(next) \/ { Var{n} }

live(_.end) =

 {}

A variable is live if the current value
of the variable may be read further
along in the program

end

start

property rules

x ":= 2;

y ":= 4;

x ":= 1;

z ":= x;

x ":= z;

Live Variables in FlowSpec

properties

 live: MaySet(name)

live(Ref(n) "-> next) =

 live(next) \/ { Var{n} }

live(_.end) =

 {}

A variable is live if the current value
of the variable may be read further
along in the program

end

start

property rules

x ":= 2;

y ":= 4;

x ":= 1;

z ":= x;

x ":= z;

Live Variables in FlowSpec

{z,x}

{z,x}

{z,x}

{z,x}

{z}

{}

{}

properties

 live: MaySet(name)

live(Ref(n) "-> next) =

 live(next) \/ { Var{n} }

live(_.end) =

 {}

A variable is live if the current value
of the variable may be read further
along in the program

end

start

property rules

x ":= 2;

y ":= 4;

x ":= 1;

z ":= x;

x ":= z;

Live Variables in FlowSpec

{z,x}

{z,x}

{z,x}

{z,x}

{z}

{}

{}

properties

 live: MaySet(name)

live(Assign(n, _) "-> next) =

 { m | m "<- live(next), Var{n} "!= m }

live(Ref(n) "-> next) =

 live(next) \/ { Var{n} }

live(_.end) =

 {}

A variable is live if the current value
of the variable may be read further
along in the program

end

start

property rules

x ":= 2;

y ":= 4;

x ":= 1;

z ":= x;

x ":= z;

Live Variables in FlowSpec

properties

 live: MaySet(name)

live(Assign(n, _) "-> next) =

 { m | m "<- live(next), Var{n} "!= m }

live(Ref(n) "-> next) =

 live(next) \/ { Var{n} }

live(_.end) =

 {}

A variable is live if the current value
of the variable may be read further
along in the program

end

start

property rules

x ":= 2;

y ":= 4;

x ":= 1;

z ":= x;

x ":= z;

Live Variables in FlowSpec

{}

{}

{}

{x}

{z}

{}

{}

properties

 live: MaySet(name)

live(Assign(n, _) "-> next) =

 { m | m "<- live(next), Var{n} "!= m }

live(Ref(n) "-> next) =

 live(next) \/ { Var{n} }

live(_.end) =

 {}

A variable is live if the current value
of the variable may be read further
along in the program

end

start

property rules

x ":= 2;

y ":= 4;

x ":= 1;

z ":= x;

x ":= z;

Live Variables in FlowSpec

end

start
A variable is live if the current value
of the variable may be read further
along in the program
properties

 live: MaySet(name)

live(Assign(n, _) "-> next) =

 { m | m "<- live(next), n "!= m }

live(Ref(n) "-> next) =

 live(next) \/ {n}

live(_.end) =

 {}

property rules

x ":= 2;

y ":= 4;

x ":= 1;

if y > 0 then

 z ":= x;

else

 z ":= y * y;

x ":= z;

Live Variables in FlowSpec

A variable is live if the current value
of the variable may be read further
along in the program
properties

 live: MaySet(name)

live(Assign(n, _) "-> next) =

 { m | m "<- live(next), n "!= m }

live(Ref(n) "-> next) =

 live(next) \/ {n}

live(_.end) =

 {}

property rules

x ":= 2;

y ":= 4;

x ":= 1;

if y > 0 then

 z ":= x;

else

 z ":= y * y;

x ":= z;

Live Variables in FlowSpec

A variable is live if the current value
of the variable may be read further
along in the program
properties

 live: MaySet(name)

live(Assign(n, _) "-> next) =

 { m | m "<- live(next), n "!= m }

live(Ref(n) "-> next) =

 live(next) \/ {n}

live(_.end) =

 {}

property rules

x ":= 2;

y ":= 4;

x ":= 1;

if y > 0 then

 z ":= x;

else

 z ":= y * y;

x ":= z;

Live Variables in FlowSpec

{z}

{z}

{}

{}

A variable is live if the current value
of the variable may be read further
along in the program
properties

 live: MaySet(name)

live(Assign(n, _) "-> next) =

 { m | m "<- live(next), n "!= m }

live(Ref(n) "-> next) =

 live(next) \/ {n}

live(_.end) =

 {}

property rules

x ":= 2;

y ":= 4;

x ":= 1;

if y > 0 then

 z ":= x;

else

 z ":= y * y;

x ":= z;

Live Variables in FlowSpec

{z}

{z}

{}

{}

A variable is live if the current value
of the variable may be read further
along in the program
properties

 live: MaySet(name)

live(Assign(n, _) "-> next) =

 { m | m "<- live(next), n "!= m }

live(Ref(n) "-> next) =

 live(next) \/ {n}

live(_.end) =

 {}

property rules

x ":= 2;

y ":= 4;

x ":= 1;

if y > 0 then

 z ":= x;

else

 z ":= y * y;

x ":= z;

Live Variables in FlowSpec

{z}

{z}

{}

{}

A variable is live if the current value
of the variable may be read further
along in the program
properties

 live: MaySet(name)

live(Assign(n, _) "-> next) =

 { m | m "<- live(next), n "!= m }

live(Ref(n) "-> next) =

 live(next) \/ {n}

live(_.end) =

 {}

property rules

x ":= 2;

y ":= 4;

x ":= 1;

if y > 0 then

 z ":= x;

else

 z ":= y * y;

x ":= z;

Live Variables in FlowSpec

{z}

{z}

{}

{}

{x}

{z}

{y}

{z}

{}

{}

A variable is live if the current value
of the variable may be read further
along in the program
properties

 live: MaySet(name)

live(Assign(n, _) "-> next) =

 { m | m "<- live(next), n "!= m }

live(Ref(n) "-> next) =

 live(next) \/ {n}

live(_.end) =

 {}

property rules

x ":= 2;

y ":= 4;

x ":= 1;

if y > 0 then

 z ":= x;

else

 z ":= y * y;

x ":= z;

Live Variables in FlowSpec

{z}

{z}

{}

{}

{x}

{z}

{y}

{z}

{}

{}

A variable is live if the current value
of the variable may be read further
along in the program
properties

 live: MaySet(name)

live(Assign(n, _) "-> next) =

 { m | m "<- live(next), n "!= m }

live(Ref(n) "-> next) =

 live(next) \/ {n}

live(_.end) =

 {}

property rules

x ":= 2;

y ":= 4;

x ":= 1;

if y > 0 then

 z ":= x;

else

 z ":= y * y;

x ":= z;

Live Variables in FlowSpec

{x,y}

{x}

{y}

{z}

{}

{}

{z}

{z}

{}

{}

{x}

{z}

{y}

{z}

{}

{}

A variable is live if the current value
of the variable may be read further
along in the program
properties

 live: MaySet(name)

live(Assign(n, _) "-> next) =

 { m | m "<- live(next), n "!= m }

live(Ref(n) "-> next) =

 live(next) \/ {n}

live(_.end) =

 {}

property rules

x ":= 2;

y ":= 4;

x ":= 1;

if y > 0 then

 z ":= x;

else

 z ":= y * y;

x ":= z;

Available Expressions in FlowSpec

x ":= a + b

y ":= a * b

while y > a + b do (

 a ":= a + 1;

 x ":= a + b

)

An expression is available if it must
have been evaluated previously and
its variables not reassigned

Available Expressions in FlowSpec

x ":= a + b

y ":= a * b

while y > a + b do (

 a ":= a + 1;

 x ":= a + b

)

properties

 available: MustSet(term)

An expression is available if it must
have been evaluated previously and
its variables not reassigned

Available Expressions in FlowSpec

x ":= a + b

y ":= a * b

while y > a + b do (

 a ":= a + 1;

 x ":= a + b

)

properties

 available: MustSet(term)

property rules

An expression is available if it must
have been evaluated previously and
its variables not reassigned

Available Expressions in FlowSpec

x ":= a + b

y ":= a * b

while y > a + b do (

 a ":= a + 1;

 x ":= a + b

)

properties

 available: MustSet(term)

available(_.start) =

 {}

property rules

An expression is available if it must
have been evaluated previously and
its variables not reassigned

Available Expressions in FlowSpec

x ":= a + b

y ":= a * b

while y > a + b do (

 a ":= a + 1;

 x ":= a + b

)

end

start

properties

 available: MustSet(term)

available(_.start) =

 {}

property rules

An expression is available if it must
have been evaluated previously and
its variables not reassigned

Available Expressions in FlowSpec

x ":= a + b

y ":= a * b

while y > a + b do (

 a ":= a + 1;

 x ":= a + b

)

properties

 available: MustSet(term)

available(_.start) =

 {}

property rules

An expression is available if it must
have been evaluated previously and
its variables not reassigned

Available Expressions in FlowSpec

{}

{}

{}

{}

{}

{}

{}

{}

x ":= a + b

y ":= a * b

while y > a + b do (

 a ":= a + 1;

 x ":= a + b

)

properties

 available: MustSet(term)

available(_.start) =

 {}

property rules

An expression is available if it must
have been evaluated previously and
its variables not reassigned

Available Expressions in FlowSpec

{}

{}

{}

{}

{}

{}

{}

{}

x ":= a + b

y ":= a * b

while y > a + b do (

 a ":= a + 1;

 x ":= a + b

)

properties

 available: MustSet(term)

available(_.start) =

 {}

property rules

An expression is available if it must
have been evaluated previously and
its variables not reassigned

Available Expressions in FlowSpec

{}

{}

{}

{}

{}

{}

{}

{}

x ":= a + b

y ":= a * b

while y > a + b do (

 a ":= a + 1;

 x ":= a + b

)

properties

 available: MustSet(term)

available(_.start) =

 {}

property rules

An expression is available if it must
have been evaluated previously and
its variables not reassigned

available(prev "-> Assign(n, e)) =

 { expr |

 expr "<- available(prev) \/ {e},

 !(n in reads(expr)) }

Available Expressions in FlowSpec

{}

{}

{}

{}

{}

{}

{}

{}

{}

{a+b}

{a+b,a*b}

{a+b,a*b}

{}

{a+b}

x ":= a + b

y ":= a * b

while y > a + b do (

 a ":= a + 1;

 x ":= a + b

)

properties

 available: MustSet(term)

available(_.start) =

 {}

property rules

An expression is available if it must
have been evaluated previously and
its variables not reassigned

available(prev "-> Assign(n, e)) =

 { expr |

 expr "<- available(prev) \/ {e},

 !(n in reads(expr)) }

Available Expressions in FlowSpec

{}

{}

{}

{}

{}

{}

{}

{}

{}

{a+b}

{a+b,a*b}

{a+b,a*b}

{}

{a+b}

{}

{a+b}

{a+b,a*b}

{a+b}

{}

{a+b}

{a+b}

x ":= a + b

y ":= a * b

while y > a + b do (

 a ":= a + 1;

 x ":= a + b

)

properties

 available: MustSet(term)

available(_.start) =

 {}

property rules

An expression is available if it must
have been evaluated previously and
its variables not reassigned

available(prev "-> Assign(n, e)) =

 { expr |

 expr "<- available(prev) \/ {e},

 !(n in reads(expr)) }

Summary

Summary: Data-Flow Analysis Specification

Control-Flow

Summary: Data-Flow Analysis Specification

Control-Flow
- Order of execution

Summary: Data-Flow Analysis Specification

Control-Flow
- Order of execution
- Reasoning about what is reachable

Summary: Data-Flow Analysis Specification

Control-Flow
- Order of execution
- Reasoning about what is reachable

Data-Flow

Summary: Data-Flow Analysis Specification

Control-Flow
- Order of execution
- Reasoning about what is reachable

Data-Flow
- Flow of data through a program

Summary: Data-Flow Analysis Specification

Control-Flow
- Order of execution
- Reasoning about what is reachable

Data-Flow
- Flow of data through a program
- Reasoning about data, and dependencies between data

Summary: Data-Flow Analysis Specification

Control-Flow
- Order of execution
- Reasoning about what is reachable

Data-Flow
- Flow of data through a program
- Reasoning about data, and dependencies between data

FlowSpec

Summary: Data-Flow Analysis Specification

Control-Flow
- Order of execution
- Reasoning about what is reachable

Data-Flow
- Flow of data through a program
- Reasoning about data, and dependencies between data

FlowSpec
- Control-Flow rules to construct the graph

Summary: Data-Flow Analysis Specification

Control-Flow
- Order of execution
- Reasoning about what is reachable

Data-Flow
- Flow of data through a program
- Reasoning about data, and dependencies between data

FlowSpec
- Control-Flow rules to construct the graph
- Annotate with information from analysis by Data-Flow rules

Summary: Data-Flow Analysis Specification

Next

From Specification to Implementation

Traditional Kill/Gen Sets

Available Expressions

“An expression is available if it must have already been computed, and not later
modified, on all paths to the program point”

previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Available Expressions

“An expression is available if it must have already been computed, and not later
modified, on all paths to the program point”

kill(Assign(var, e1)) :=
 { e2 ∈ AllAE | var ∈ FV(e2) }

previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Available Expressions

“An expression is available if it must have already been computed, and not later
modified, on all paths to the program point”

kill(Assign(var, e1)) :=
 { e2 ∈ AllAE | var ∈ FV(e2) }

gen(Assign(var, e1)) :=
 { e2 ∈ SE(e1) | var ∉ FV(e2) }

previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Available Expressions

gen(Assign(var, e1)) :=
 { e2 ∈ SE(e1) | var ∉ FV(e2) }

“An expression is available if it must have already been computed, and not later
modified, on all paths to the program point”

kill(Assign(var, e1)) :=
 { e2 ∈ AllAE | var ∈ FV(e2) }

x := a + b

y := a * b

y > a + b

a := a + 1

x := a + b

previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Available Expressions

gen(Assign(var, e1)) :=
 { e2 ∈ SE(e1) | var ∉ FV(e2) }

“An expression is available if it must have already been computed, and not later
modified, on all paths to the program point”

kill(Assign(var, e1)) :=
 { e2 ∈ AllAE | var ∈ FV(e2) }

{}

x := a + b

y := a * b

y > a + b

a := a + 1

x := a + b

previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Available Expressions

gen(Assign(var, e1)) :=
 { e2 ∈ SE(e1) | var ∉ FV(e2) }

“An expression is available if it must have already been computed, and not later
modified, on all paths to the program point”

kill(Assign(var, e1)) :=
 { e2 ∈ AllAE | var ∈ FV(e2) } {a + b}

{}

x := a + b

y := a * b

y > a + b

a := a + 1

x := a + b

previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Available Expressions

gen(Assign(var, e1)) :=
 { e2 ∈ SE(e1) | var ∉ FV(e2) }

“An expression is available if it must have already been computed, and not later
modified, on all paths to the program point”

kill(Assign(var, e1)) :=
 { e2 ∈ AllAE | var ∈ FV(e2) } {a + b}

{a + b, a * b}

{}

x := a + b

y := a * b

y > a + b

a := a + 1

x := a + b

previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Available Expressions

gen(Assign(var, e1)) :=
 { e2 ∈ SE(e1) | var ∉ FV(e2) }

“An expression is available if it must have already been computed, and not later
modified, on all paths to the program point”

kill(Assign(var, e1)) :=
 { e2 ∈ AllAE | var ∈ FV(e2) } {a + b}

{a + b, a * b}

{}

{a + b, a * b}

x := a + b

y := a * b

y > a + b

a := a + 1

x := a + b

previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Available Expressions

gen(Assign(var, e1)) :=
 { e2 ∈ SE(e1) | var ∉ FV(e2) }

“An expression is available if it must have already been computed, and not later
modified, on all paths to the program point”

kill(Assign(var, e1)) :=
 { e2 ∈ AllAE | var ∈ FV(e2) } {a + b}

{a + b, a * b}

{}

{a + b, a * b}

{}

x := a + b

y := a * b

y > a + b

a := a + 1

x := a + b

previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Available Expressions

gen(Assign(var, e1)) :=
 { e2 ∈ SE(e1) | var ∉ FV(e2) }

“An expression is available if it must have already been computed, and not later
modified, on all paths to the program point”

kill(Assign(var, e1)) :=
 { e2 ∈ AllAE | var ∈ FV(e2) } {a + b}

{a + b, a * b}

{}

{a + b, a * b}

{}

{a + b}

x := a + b

y := a * b

y > a + b

a := a + 1

x := a + b

previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Available Expressions

gen(Assign(var, e1)) :=
 { e2 ∈ SE(e1) | var ∉ FV(e2) }

“An expression is available if it must have already been computed, and not later
modified, on all paths to the program point”

kill(Assign(var, e1)) :=
 { e2 ∈ AllAE | var ∈ FV(e2) } {a + b}

{a + b, a * b}

{}

{a + b, a * b}

{}

{a + b}

x := a + b

y := a * b

y > a + b

a := a + 1

x := a + b

previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Available Expressions

gen(Assign(var, e1)) :=
 { e2 ∈ SE(e1) | var ∉ FV(e2) }

“An expression is available if it must have already been computed, and not later
modified, on all paths to the program point”

kill(Assign(var, e1)) :=
 { e2 ∈ AllAE | var ∈ FV(e2) } {a + b}

{a + b, a * b}

{}

{a + b, a * b}

{}

{a + b}

x := a + b

y := a * b

y > a + b

a := a + 1

x := a + b

previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Live Variables

kill(Assign(var, e1)) :=
 { var }

gen(Assign(var, e1)) :=
 { FV(e1) }

gen(b@BinOp(_, _, _)) :=
 { FV(b) }

gen(u@UnOp(_, _)) :=
 { FV(u) }

“A variable is live if there exists a path from there to a use of the variable, with no
re-definition of the variable on that path. ”

previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Live Variables

kill(Assign(var, e1)) :=
 { var }

gen(Assign(var, e1)) :=
 { FV(e1) }

gen(b@BinOp(_, _, _)) :=
 { FV(b) }

gen(u@UnOp(_, _)) :=
 { FV(u) }

y := 4

x := 1

y > 0

z := x
z := y * y

x := z

x := 2

“A variable is live if there exists a path from there to a use of the variable, with no
re-definition of the variable on that path. ”

previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Live Variables

kill(Assign(var, e1)) :=
 { var }

gen(Assign(var, e1)) :=
 { FV(e1) }

gen(b@BinOp(_, _, _)) :=
 { FV(b) }

gen(u@UnOp(_, _)) :=
 { FV(u) }

{}

y := 4

x := 1

y > 0

z := x
z := y * y

x := z

x := 2

“A variable is live if there exists a path from there to a use of the variable, with no
re-definition of the variable on that path. ”

previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Live Variables

kill(Assign(var, e1)) :=
 { var }

gen(Assign(var, e1)) :=
 { FV(e1) }

gen(b@BinOp(_, _, _)) :=
 { FV(b) }

gen(u@UnOp(_, _)) :=
 { FV(u) }

{}

{z}

y := 4

x := 1

y > 0

z := x
z := y * y

x := z

x := 2

“A variable is live if there exists a path from there to a use of the variable, with no
re-definition of the variable on that path. ”

previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Live Variables

kill(Assign(var, e1)) :=
 { var }

gen(Assign(var, e1)) :=
 { FV(e1) }

gen(b@BinOp(_, _, _)) :=
 { FV(b) }

gen(u@UnOp(_, _)) :=
 { FV(u) }

{}

{z}

{y}

y := 4

x := 1

y > 0

z := x
z := y * y

x := z

x := 2

“A variable is live if there exists a path from there to a use of the variable, with no
re-definition of the variable on that path. ”

previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Live Variables

kill(Assign(var, e1)) :=
 { var }

gen(Assign(var, e1)) :=
 { FV(e1) }

gen(b@BinOp(_, _, _)) :=
 { FV(b) }

gen(u@UnOp(_, _)) :=
 { FV(u) }

{}

{z}

{y}

{x}

y := 4

x := 1

y > 0

z := x
z := y * y

x := z

x := 2

“A variable is live if there exists a path from there to a use of the variable, with no
re-definition of the variable on that path. ”

previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Live Variables

kill(Assign(var, e1)) :=
 { var }

gen(Assign(var, e1)) :=
 { FV(e1) }

gen(b@BinOp(_, _, _)) :=
 { FV(b) }

gen(u@UnOp(_, _)) :=
 { FV(u) }

{}

{z}

{y}

{x} {x,y}

y := 4

x := 1

y > 0

z := x
z := y * y

x := z

x := 2

“A variable is live if there exists a path from there to a use of the variable, with no
re-definition of the variable on that path. ”

previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Live Variables

kill(Assign(var, e1)) :=
 { var }

gen(Assign(var, e1)) :=
 { FV(e1) }

gen(b@BinOp(_, _, _)) :=
 { FV(b) }

gen(u@UnOp(_, _)) :=
 { FV(u) }

{}

{z}

{y}

{x} {x,y}

{x,y}

y := 4

x := 1

y > 0

z := x
z := y * y

x := z

x := 2

“A variable is live if there exists a path from there to a use of the variable, with no
re-definition of the variable on that path. ”

previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Live Variables

kill(Assign(var, e1)) :=
 { var }

gen(Assign(var, e1)) :=
 { FV(e1) }

gen(b@BinOp(_, _, _)) :=
 { FV(b) }

gen(u@UnOp(_, _)) :=
 { FV(u) }

{}

{z}

{y}

{x} {x,y}

{x,y}

{y}
y := 4

x := 1

y > 0

z := x
z := y * y

x := z

x := 2

“A variable is live if there exists a path from there to a use of the variable, with no
re-definition of the variable on that path. ”

previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Live Variables

kill(Assign(var, e1)) :=
 { var }

gen(Assign(var, e1)) :=
 { FV(e1) }

gen(b@BinOp(_, _, _)) :=
 { FV(b) }

gen(u@UnOp(_, _)) :=
 { FV(u) }

{}

{z}

{y}

{x} {x,y}

{x,y}

{y}

{}
y := 4

x := 1

y > 0

z := x
z := y * y

x := z

x := 2

“A variable is live if there exists a path from there to a use of the variable, with no
re-definition of the variable on that path. ”

previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Live Variables

kill(Assign(var, e1)) :=
 { var }

gen(Assign(var, e1)) :=
 { FV(e1) }

gen(b@BinOp(_, _, _)) :=
 { FV(b) }

gen(u@UnOp(_, _)) :=
 { FV(u) }

{}

{z}

{y}

{x} {x,y}

{x,y}

{y}

{}
y := 4

x := 1

y > 0

z := x
z := y * y

x := z

x := 2
{}

“A variable is live if there exists a path from there to a use of the variable, with no
re-definition of the variable on that path. ”

previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Traditional set based analysis

Sets as analysis information

Traditional set based analysis

Sets as analysis information
Kill and gen sets per control node type

Traditional set based analysis

Sets as analysis information
Kill and gen sets per control node type
-previousSet ∖ kill(currentNode) ∪ gen(currentNode)

Traditional set based analysis

Sets as analysis information
Kill and gen sets per control node type
-previousSet ∖ kill(currentNode) ∪ gen(currentNode)
Can propagate either forward or backward

Traditional set based analysis

Sets as analysis information
Kill and gen sets per control node type
-previousSet ∖ kill(currentNode) ∪ gen(currentNode)
Can propagate either forward or backward
Can merge information with either union or intersection

Traditional set based analysis

Sets as analysis information
Kill and gen sets per control node type
-previousSet ∖ kill(currentNode) ∪ gen(currentNode)
Can propagate either forward or backward
Can merge information with either union or intersection
- Respectively called may and must analyses

Traditional set based analysis

Beyond Sets

Constant propagation and folding

let

 var a : int ":= 0

 var b : int ":= a + 1

 in

 c ":= c + b;

 a ":= 2 * b

end

Constant propagation and folding

let

 var a : int ":= 0

 var b : int ":= a + 1

 in

 c ":= c + b;

 a ":= 2 * b

end

let

 var a : int ":= 0

 var b : int ":= 0 + 1

 in

 c ":= c + b;

 a ":= 2 * b

end

single step

Constant propagation and folding

let

 var a : int ":= 0

 var b : int ":= a + 1

 in

 c ":= c + b;

 a ":= 2 * b

end

let

 var a : int ":= 0

 var b : int ":= 0 + 1

 in

 c ":= c + b;

 a ":= 2 * b

end

single step

let

 var a : int ":= 0

 var b : int ":= 0 + 1

 in

 c ":= c + 1;

 a ":= 2 * 1

end

full propagation

Constant propagation and folding

let

 var a : int ":= 0

 var b : int ":= a + 1

 in

 c ":= c + b;

 a ":= 2 * b

end

Constant propagation and folding

let

 var a : int ":= 0

 var b : int ":= a + 1

 in

 c ":= c + b;

 a ":= 2 * b

end

a ↦ 0

Constant propagation and folding

let

 var a : int ":= 0

 var b : int ":= a + 1

 in

 c ":= c + b;

 a ":= 2 * b

end

a ↦ 0

a ↦ 0, b ↦ 1

Constant propagation and folding

let

 var a : int ":= 0

 var b : int ":= a + 1

 in

 c ":= c + b;

 a ":= 2 * b

end

a ↦ 0

a ↦ 0, b ↦ 1, c ↦ ?

a ↦ 0, b ↦ 1

Constant propagation and folding

let

 var a : int ":= 0

 var b : int ":= a + 1

 in

 c ":= c + b;

 a ":= 2 * b

end

a ↦ 0

a ↦ 0, b ↦ 1, c ↦ ?

a ↦ 0, b ↦ 1

a ↦ 2, b ↦ 1, c ↦ ?

Kill/gen doesn’t work here

Constant propagation and folding

let

 var a : int ":= 0

 var b : int ":= a + 1

 in

 c ":= c + b;

 a ":= 2 * b

end

a ↦ 0

a ↦ 0, b ↦ 1, c ↦ ?

a ↦ 0, b ↦ 1

a ↦ 2, b ↦ 1, c ↦ ?

Kill/gen doesn’t work here
- We need the previous information to compute the current

Constant propagation and folding

let

 var a : int ":= 0

 var b : int ":= a + 1

 in

 c ":= c + b;

 a ":= 2 * b

end

a ↦ 0

a ↦ 0, b ↦ 1, c ↦ ?

a ↦ 0, b ↦ 1

a ↦ 2, b ↦ 1, c ↦ ?

Kill/gen doesn’t work here
- We need the previous information to compute the current

Can we use a set for this map?

Constant propagation and folding

let

 var a : int ":= 0

 var b : int ":= a + 1

 in

 c ":= c + b;

 a ":= 2 * b

end

a ↦ 0

a ↦ 0, b ↦ 1, c ↦ ?

a ↦ 0, b ↦ 1

a ↦ 2, b ↦ 1, c ↦ ?

Kill/gen doesn’t work here
- We need the previous information to compute the current

Can we use a set for this map?
- Keys map to single values, so no

Constant propagation and folding

let

 var a : int ":= 0

 var b : int ":= a + 1

 in

 c ":= c + b;

 a ":= 2 * b

end

a ↦ 0

a ↦ 0, b ↦ 1, c ↦ ?

a ↦ 0, b ↦ 1

a ↦ 2, b ↦ 1, c ↦ ?

Kill/gen doesn’t work here
- We need the previous information to compute the current

Can we use a set for this map?
- Keys map to single values, so no

But what if we keep multiple values?

Constant propagation and folding

let

 var a : int ":= 0

 var b : int ":= a + 1

 in

 c ":= c + b;

 a ":= 2 * b

end

a ↦ 0

a ↦ 0, b ↦ 1, c ↦ ?

a ↦ 0, b ↦ 1

a ↦ 2, b ↦ 1, c ↦ ?

Kill/gen doesn’t work here
- We need the previous information to compute the current

Can we use a set for this map?
- Keys map to single values, so no

But what if we keep multiple values?
- Analysing loops may not terminate

Constant propagation and folding

let

 var a : int ":= 0

 var b : int ":= a + 1

 in

 c ":= c + b;

 a ":= 2 * b

end

a ↦ 0

a ↦ 0, b ↦ 1, c ↦ ?

a ↦ 0, b ↦ 1

a ↦ 2, b ↦ 1, c ↦ ?

Example: Non-termination

let

 var a : int ":= 0

 var b : int ":= a + 1

 in

 while y > a + b do

 a ":= a + 1

end

Example: Non-termination

let

 var a : int ":= 0

 var b : int ":= a + 1

 in

 while y > a + b do

 a ":= a + 1

end

a ↦ 0

Example: Non-termination

let

 var a : int ":= 0

 var b : int ":= a + 1

 in

 while y > a + b do

 a ":= a + 1

end

a ↦ 0

a ↦ 0; b ↦ 1

Example: Non-termination

let

 var a : int ":= 0

 var b : int ":= a + 1

 in

 while y > a + b do

 a ":= a + 1

end

a ↦ 0

a ↦ 0; b ↦ 1

a ↦ 0; b ↦ 1

Example: Non-termination

let

 var a : int ":= 0

 var b : int ":= a + 1

 in

 while y > a + b do

 a ":= a + 1

end

a ↦ 0

a ↦ 0; b ↦ 1

a ↦ 0; b ↦ 1

a ↦ 0,1; b ↦ 1

Example: Non-termination

let

 var a : int ":= 0

 var b : int ":= a + 1

 in

 while y > a + b do

 a ":= a + 1

end

a ↦ 0

a ↦ 0; b ↦ 1

a ↦ 0; b ↦ 1

a ↦ 0,1; b ↦ 1

a ↦ 0,1; b ↦ 1

Example: Non-termination

let

 var a : int ":= 0

 var b : int ":= a + 1

 in

 while y > a + b do

 a ":= a + 1

end

a ↦ 0

a ↦ 0; b ↦ 1

a ↦ 0; b ↦ 1

a ↦ 0,1; b ↦ 1

a ↦ 0,1; b ↦ 1

a ↦ 0,1,2; b ↦ 1

Constant propagation and folding

The type of the analysis information

Constant propagation and folding

The type of the analysis information
- Variables bound to either a particular constant or a marker for non-

constants

Constant propagation and folding

The type of the analysis information
- Variables bound to either a particular constant or a marker for non-

constants

The transfer functions per control node

Constant propagation and folding

The type of the analysis information
- Variables bound to either a particular constant or a marker for non-

constants

The transfer functions per control node
- Basically an interpreter implementation for constants

Constant propagation and folding

The type of the analysis information
- Variables bound to either a particular constant or a marker for non-

constants

The transfer functions per control node
- Basically an interpreter implementation for constants
- Needs to propagate markers when found

Constant propagation and folding

Monotone Frameworks

Termination

Data-Flow Analysis needs fixpoint computation

Termination

Data-Flow Analysis needs fixpoint computation
- Because of loops

Termination

Lattice Theory

A set X is totally ordered under ≤ if for a, b, c ∈ X

Lattice Theory

A set X is totally ordered under ≤ if for a, b, c ∈ X
- a ≤ b ∧ b ≤ a ⇒ a = b (antisymmetry)

Lattice Theory

A set X is totally ordered under ≤ if for a, b, c ∈ X
- a ≤ b ∧ b ≤ a ⇒ a = b (antisymmetry)

- a ≤ b ∧ b ≤ c ⇒ a ≤ c (transitivity)

Lattice Theory

A set X is totally ordered under ≤ if for a, b, c ∈ X
- a ≤ b ∧ b ≤ a ⇒ a = b (antisymmetry)

- a ≤ b ∧ b ≤ c ⇒ a ≤ c (transitivity)

- a ≤ b ∨ b ≤ a (totality)

Lattice Theory

A set X is totally ordered under ≤ if for a, b, c ∈ X
- a ≤ b ∧ b ≤ a ⇒ a = b (antisymmetry)

- a ≤ b ∧ b ≤ c ⇒ a ≤ c (transitivity)

- a ≤ b ∨ b ≤ a (totality)

A partial ordering drops the totality constraint

Lattice Theory

A set X is totally ordered under ≤ if for a, b, c ∈ X
- a ≤ b ∧ b ≤ a ⇒ a = b (antisymmetry)

- a ≤ b ∧ b ≤ c ⇒ a ≤ c (transitivity)

- a ≤ b ∨ b ≤ a (totality)

A partial ordering drops the totality constraint
- e.g. subset inclusion:

Lattice Theory

Lattice Theory

A Lattice is a partially ordered set where

Lattice Theory

A Lattice is a partially ordered set where
- every two elements have a unique least upper bound (or supremum or join)

Lattice Theory

A Lattice is a partially ordered set where
- every two elements have a unique least upper bound (or supremum or join)
- every two elements have a unique greatest lower bound (or infimum or meet)

Lattice Theory

A Lattice is a partially ordered set where
- every two elements have a unique least upper bound (or supremum or join)
- every two elements have a unique greatest lower bound (or infimum or meet)

Least upper bound (LUB)

Lattice Theory

A Lattice is a partially ordered set where
- every two elements have a unique least upper bound (or supremum or join)
- every two elements have a unique greatest lower bound (or infimum or meet)

Least upper bound (LUB)
- a ⊑ b ⇔ a ⨆ b = b

Lattice Theory

A Lattice is a partially ordered set where
- every two elements have a unique least upper bound (or supremum or join)
- every two elements have a unique greatest lower bound (or infimum or meet)

Least upper bound (LUB)
- a ⊑ b ⇔ a ⨆ b = b

- a ⨆ b = c ⇒ a ⊑ c ∧ b ⊑ c

Lattice Theory

A Lattice is a partially ordered set where
- every two elements have a unique least upper bound (or supremum or join)
- every two elements have a unique greatest lower bound (or infimum or meet)

Least upper bound (LUB)
- a ⊑ b ⇔ a ⨆ b = b

- a ⨆ b = c ⇒ a ⊑ c ∧ b ⊑ c

Greatest lower bound (GLB)

Lattice Theory

A Lattice is a partially ordered set where
- every two elements have a unique least upper bound (or supremum or join)
- every two elements have a unique greatest lower bound (or infimum or meet)

Least upper bound (LUB)
- a ⊑ b ⇔ a ⨆ b = b

- a ⨆ b = c ⇒ a ⊑ c ∧ b ⊑ c

Greatest lower bound (GLB)
- a ⊑ b ⇔ a ⨅ b = a

Lattice Theory

A Lattice is a partially ordered set where
- every two elements have a unique least upper bound (or supremum or join)
- every two elements have a unique greatest lower bound (or infimum or meet)

Least upper bound (LUB)
- a ⊑ b ⇔ a ⨆ b = b

- a ⨆ b = c ⇒ a ⊑ c ∧ b ⊑ c

Greatest lower bound (GLB)
- a ⊑ b ⇔ a ⨅ b = a

- a ⨅ b = c ⇒ c ⊑ a ∧ c ⊑ b

Lattice Theory

A Lattice is a partially ordered set where
- every two elements have a unique least upper bound (or supremum or join)
- every two elements have a unique greatest lower bound (or infimum or meet)

Least upper bound (LUB)
- a ⊑ b ⇔ a ⨆ b = b

- a ⨆ b = c ⇒ a ⊑ c ∧ b ⊑ c

Greatest lower bound (GLB)
- a ⊑ b ⇔ a ⨅ b = a

- a ⨅ b = c ⇒ c ⊑ a ∧ c ⊑ b

A bounded lattice has a top and bottom

Lattice Theory

A Lattice is a partially ordered set where
- every two elements have a unique least upper bound (or supremum or join)
- every two elements have a unique greatest lower bound (or infimum or meet)

Least upper bound (LUB)
- a ⊑ b ⇔ a ⨆ b = b

- a ⨆ b = c ⇒ a ⊑ c ∧ b ⊑ c

Greatest lower bound (GLB)
- a ⊑ b ⇔ a ⨅ b = a

- a ⨅ b = c ⇒ c ⊑ a ∧ c ⊑ b

A bounded lattice has a top and bottom
- These are ⊤ and ⊥ respectively

Lattice Theory

Lattices for Data-Flow Analysis

Consider ⊤ as the coarsest approximation

Lattices for Data-Flow Analysis

Consider ⊤ as the coarsest approximation
- It is a safe approximation,

Lattices for Data-Flow Analysis

Consider ⊤ as the coarsest approximation
- It is a safe approximation,
- because it says we are not sure of anything

Lattices for Data-Flow Analysis

Consider ⊤ as the coarsest approximation
- It is a safe approximation,
- because it says we are not sure of anything

Then we can combine data-flow information with ⨆

Lattices for Data-Flow Analysis

Consider ⊤ as the coarsest approximation
- It is a safe approximation,
- because it says we are not sure of anything

Then we can combine data-flow information with ⨆
- It is the most information preserving combination of information

Lattices for Data-Flow Analysis

Lattices for Data-Flow Analysis

Transfer functions should be monotone increasing

Lattices for Data-Flow Analysis

Transfer functions should be monotone increasing
- i.e. for transfer function f, a ⊑ b ⇒ f(a) ⊑ f(b)

Lattices for Data-Flow Analysis

Transfer functions should be monotone increasing
- i.e. for transfer function f, a ⊑ b ⇒ f(a) ⊑ f(b)

- This includes the identity function

Lattices for Data-Flow Analysis

Transfer functions should be monotone increasing
- i.e. for transfer function f, a ⊑ b ⇒ f(a) ⊑ f(b)

- This includes the identity function

Monotone transfer functions give a termination guarantee

Lattices for Data-Flow Analysis

Transfer functions should be monotone increasing
- i.e. for transfer function f, a ⊑ b ⇒ f(a) ⊑ f(b)

- This includes the identity function

Monotone transfer functions give a termination guarantee
- In a loop we reach a fixpoint if the functions start returning the same thing

Lattices for Data-Flow Analysis

Transfer functions should be monotone increasing
- i.e. for transfer function f, a ⊑ b ⇒ f(a) ⊑ f(b)

- This includes the identity function

Monotone transfer functions give a termination guarantee
- In a loop we reach a fixpoint if the functions start returning the same thing
- Worst case scenario: the loop reaches ⊤

Lattices for Data-Flow Analysis

Transfer functions should be monotone increasing
- i.e. for transfer function f, a ⊑ b ⇒ f(a) ⊑ f(b)

- This includes the identity function

Monotone transfer functions give a termination guarantee
- In a loop we reach a fixpoint if the functions start returning the same thing
- Worst case scenario: the loop reaches ⊤
- This only works if the lattice is of finite height

Lattices for Data-Flow Analysis

Transfer functions should be monotone increasing
- i.e. for transfer function f, a ⊑ b ⇒ f(a) ⊑ f(b)

- This includes the identity function

Monotone transfer functions give a termination guarantee
- In a loop we reach a fixpoint if the functions start returning the same thing
- Worst case scenario: the loop reaches ⊤
- This only works if the lattice is of finite height

General interval analysis has an infinite lattice

Lattices for Data-Flow Analysis

Transfer functions should be monotone increasing
- i.e. for transfer function f, a ⊑ b ⇒ f(a) ⊑ f(b)

- This includes the identity function

Monotone transfer functions give a termination guarantee
- In a loop we reach a fixpoint if the functions start returning the same thing
- Worst case scenario: the loop reaches ⊤
- This only works if the lattice is of finite height

General interval analysis has an infinite lattice
- ⊤ = [-∞,∞]

Lattices for Data-Flow Analysis

Transfer functions should be monotone increasing
- i.e. for transfer function f, a ⊑ b ⇒ f(a) ⊑ f(b)

- This includes the identity function

Monotone transfer functions give a termination guarantee
- In a loop we reach a fixpoint if the functions start returning the same thing
- Worst case scenario: the loop reaches ⊤
- This only works if the lattice is of finite height

General interval analysis has an infinite lattice
- ⊤ = [-∞,∞]
- If a loop adds a finite number to a variable, you never get to ∞

Lattices for Data-Flow Analysis

Recap

An analysis consists of

Recap

An analysis consists of
- The type of the analysis information 

Recap

An analysis consists of
- The type of the analysis information 

- The transfer functions that express the ‘effect’ of a control node

Recap

An analysis consists of
- The type of the analysis information 

- The transfer functions that express the ‘effect’ of a control node

Recap

An analysis consists of
- The type of the analysis information 

- The transfer functions that express the ‘effect’ of a control node

- The initial analysis information

Recap

An analysis consists of
- The type of the analysis information, and the lattice instance for

that type

- The transfer functions that express the ‘effect’ of a control node

‣These should be monotone with respect to the lattice

- The initial analysis information

Recap

Executing Monotone
Frameworks

Executing Monotone Frameworks

Great formal model for reasoning

Executing Monotone Frameworks

Great formal model for reasoning
- Fairly simple

Executing Monotone Frameworks

Great formal model for reasoning
- Fairly simple
- Makes intuitive sense

Executing Monotone Frameworks

Great formal model for reasoning
- Fairly simple
- Makes intuitive sense
- Has nice mathematical properties

Executing Monotone Frameworks

Great formal model for reasoning
- Fairly simple
- Makes intuitive sense
- Has nice mathematical properties

But how to execute?

Executing Monotone Frameworks

Framework Overview

Control-flow graph

Framework Overview

Control-flow graph
- graph

Framework Overview

Control-flow graph
- graph
- start node

Framework Overview

Control-flow graph
- graph
- start node
- reverse beforehand if backward analysis

Framework Overview

Control-flow graph
- graph
- start node
- reverse beforehand if backward analysis

Lattice instance for data-flow information:

Framework Overview

Control-flow graph
- graph
- start node
- reverse beforehand if backward analysis

Lattice instance for data-flow information:
- Lattice L

Framework Overview

Control-flow graph
- graph
- start node
- reverse beforehand if backward analysis

Lattice instance for data-flow information:
- Lattice L
- Least Upper Bound ⨆

Framework Overview

Control-flow graph
- graph
- start node
- reverse beforehand if backward analysis

Lattice instance for data-flow information:
- Lattice L
- Least Upper Bound ⨆
- Bottom value ⊥ ∈ L

Framework Overview

Control-flow graph
- graph
- start node
- reverse beforehand if backward analysis

Lattice instance for data-flow information:
- Lattice L
- Least Upper Bound ⨆
- Bottom value ⊥ ∈ L

Initial data-flow information for start node

Framework Overview

Control-flow graph
- graph
- start node
- reverse beforehand if backward analysis

Lattice instance for data-flow information:
- Lattice L
- Least Upper Bound ⨆
- Bottom value ⊥ ∈ L

Initial data-flow information for start node
Transfer function f : (L → L) per control-flow graph node

Framework Overview

Control-flow graph
- graph
- start node
- reverse beforehand if backward analysis

Lattice instance for data-flow information:
- Lattice L
- Least Upper Bound ⨆
- Bottom value ⊥ ∈ L

Initial data-flow information for start node
Transfer function f : (L → L) per control-flow graph node
- Denotes the data-flow effect of the CFG node

Framework Overview

Naive Approach

start_node.value = initial_value

walk(start_node)

function walk(node) =

 for next in node.successors:

 next.value = node.transfer(node.value)

 walk(next)

Naive Approach

start_node.value = initial_value

walk(start_node)

function walk(node) =

 for next in node.successors:

 next.value = node.transfer(node.value)

 walk(next)

Naive Approach

start_node.value = initial_value

walk(start_node)

function walk(node) =

 for next in node.successors:

 next.value = node.transfer(node.value)

 walk(next)

Naive Approach

start_node.value = initial_value

walk(start_node)

function walk(node) =

 for next in node.successors:

 next.value = node.transfer(node.value)

 walk(next)

Naive Approach

start_node.value = initial_value

walk(start_node)

function walk(node) =

 for next in node.successors:

 next.value = node.transfer(node.value)

 walk(next)

Naive Approach

start_node.value = initial_value

walk(start_node)

function walk(node) =

 for next in node.successors:

 next.value = node.transfer(node.value)

 walk(next)

Naive Approach

start_node.value = initial_value

walk(start_node)

function walk(node) =

 for next in node.successors:

 next.value = node.transfer(node.value)

 walk(next)

Naive Approach

start_node.value = initial_value

walk(start_node)

function walk(node) =

 for next in node.successors:

 next.value = node.transfer(node.value)

 walk(next)

Naive Approach

start_node.value = initial_value

walk(start_node)

function walk(node) =

 for next in node.successors:

 next.value = node.transfer(node.value)

 walk(next)

Naive Approach

start_node.value = initial_value

walk(start_node)

function walk(node) =

 for next in node.successors:

 next.value = node.transfer(node.value)

 walk(next)

- Fine for straight-line programs

Naive Approach

start_node.value = initial_value

walk(start_node)

function walk(node) =

 for next in node.successors:

 next.value = node.transfer(node.value)

 walk(next)

- Fine for straight-line programs
- Distributes information along splits in control-flow

Naive Approach

start_node.value = initial_value

walk(start_node)

function walk(node) =

 for next in node.successors:

 next.value = node.transfer(node.value)

 walk(next)

- Fine for straight-line programs
- Distributes information along splits in control-flow
- Overrides values from one path with those of another

Naive Approach

start_node.value = initial_value

walk(start_node)

function walk(node) =

 for next in node.successors:

 next.value = node.transfer(node.value)

 walk(next)

- Fine for straight-line programs
- Distributes information along splits in control-flow
- Overrides values from one path with those of another
- Recursive: great for stack overflows on loops

Using Lattices
for node in nodes:

 node.value = bottom

start_node.value = initial_value

walk(start_node)

function walk(node) =

 for next in node.successors:

 next.value =

 next.value ⨆ node.transfer(node.value)

 walk(next)

- Fine for straight-line programs
- Distributes information along splits in control-flow
- Combines values from one path with those of another
- Recursive: great for stack overflows on loops

Worklist: Iterative instead of Recursive
for node in nodes:

 node.value = bottom

start_node.value = initial_value

worklist = nodes

while !worklist.empty():

 node = worklist.pop()

 for next in node.successors:

 oldValue = next.value

 newValue = node.transfer(node.value)

 if !(newValue ⊑ oldValue):

 next.value = oldValue ⨆ newValue

 worklist = worklist "++ [next]

Worklist: Iterative instead of Recursive
for node in nodes:

 node.value = bottom

start_node.value = initial_value

worklist = nodes

while !worklist.empty():

 node = worklist.pop()

 for next in node.successors:

 oldValue = next.value

 newValue = node.transfer(node.value)

 if !(newValue ⊑ oldValue):

 next.value = oldValue ⨆ newValue

 worklist = worklist "++ [next]

Worklist: Iterative instead of Recursive
for node in nodes:

 node.value = bottom

start_node.value = initial_value

worklist = nodes

while !worklist.empty():

 node = worklist.pop()

 for next in node.successors:

 oldValue = next.value

 newValue = node.transfer(node.value)

 if !(newValue ⊑ oldValue):

 next.value = oldValue ⨆ newValue

 worklist = worklist "++ [next]

- Fine for straight-line programs

Worklist: Iterative instead of Recursive
for node in nodes:

 node.value = bottom

start_node.value = initial_value

worklist = nodes

while !worklist.empty():

 node = worklist.pop()

 for next in node.successors:

 oldValue = next.value

 newValue = node.transfer(node.value)

 if !(newValue ⊑ oldValue):

 next.value = oldValue ⨆ newValue

 worklist = worklist "++ [next]

- Fine for straight-line programs
- Distributes information along splits in control-flow

Worklist: Iterative instead of Recursive
for node in nodes:

 node.value = bottom

start_node.value = initial_value

worklist = nodes

while !worklist.empty():

 node = worklist.pop()

 for next in node.successors:

 oldValue = next.value

 newValue = node.transfer(node.value)

 if !(newValue ⊑ oldValue):

 next.value = oldValue ⨆ newValue

 worklist = worklist "++ [next]

- Fine for straight-line programs
- Distributes information along splits in control-flow
- Combines values from one path with those of another

Worklist: Iterative instead of Recursive
for node in nodes:

 node.value = bottom

start_node.value = initial_value

worklist = nodes

while !worklist.empty():

 node = worklist.pop()

 for next in node.successors:

 oldValue = next.value

 newValue = node.transfer(node.value)

 if !(newValue ⊑ oldValue):

 next.value = oldValue ⨆ newValue

 worklist = worklist "++ [next]

- Fine for straight-line programs
- Distributes information along splits in control-flow
- Combines values from one path with those of another
- Worklist: works for loops too

Worklist: Iterative instead of Recursive
for node in nodes:

 node.value = bottom

start_node.value = initial_value

worklist = nodes

while !worklist.empty():

 node = worklist.pop()

 for next in node.successors:

 oldValue = next.value

 newValue = node.transfer(node.value)

 if !(newValue ⊑ oldValue):

 next.value = oldValue ⨆ newValue

 worklist = worklist "++ [next]

- Fine for straight-line programs
- Distributes information along splits in control-flow
- Combines values from one path with those of another
- Worklist: works for loops too

Worklist: Iterative instead of Recursive
for node in nodes:

 node.value = bottom

start_node.value = initial_value

worklist = nodes

while !worklist.empty():

 node = worklist.pop()

 for next in node.successors:

 oldValue = next.value

 newValue = node.transfer(node.value)

 if !(newValue ⊑ oldValue):

 next.value = oldValue ⨆ newValue

 worklist = worklist "++ [next]

- Fine for straight-line programs
- Distributes information along splits in control-flow
- Combines values from one path with those of another
- Worklist: works for loops too

If initial_value == bottom and a
transfer function is identity: 

 traversal will stop there, so don’t
just start from the start_node

FlowSpec Design

Control-flow graph
- graph

- start node

- reverse beforehand if backward analysis

Lattice instance for data-flow information:
- Lattice L

- Least Upper Bound ⨆

- Bottom value ⊥ ∈ L

Initial data-flow information for start node
Transfer function f : (L → L) per control-flow graph node
- Denotes the data-flow effect of the CFG node

Framework Overview

Control-flow graph
- graph

- start node

- reverse beforehand if backward analysis

Lattice instance for data-flow information:
- Lattice L

- Least Upper Bound ⨆

- Bottom value ⊥ ∈ L

Initial data-flow information for start node
Transfer function f : (L → L) per control-flow graph node
- Denotes the data-flow effect of the CFG node

Framework Overview

Control-flow rules

Control-flow graph
- graph

- start node

- reverse beforehand if backward analysis

Lattice instance for data-flow information:
- Lattice L

- Least Upper Bound ⨆

- Bottom value ⊥ ∈ L

Initial data-flow information for start node
Transfer function f : (L → L) per control-flow graph node
- Denotes the data-flow effect of the CFG node

Framework Overview

Control-flow rules
Root rule(s)

Control-flow graph
- graph

- start node

- reverse beforehand if backward analysis

Lattice instance for data-flow information:
- Lattice L

- Least Upper Bound ⨆

- Bottom value ⊥ ∈ L

Initial data-flow information for start node
Transfer function f : (L → L) per control-flow graph node
- Denotes the data-flow effect of the CFG node

Framework Overview

Control-flow rules
Root rule(s)

In edge direction of data-flow rules

Control-flow graph
- graph

- start node

- reverse beforehand if backward analysis

Lattice instance for data-flow information:
- Lattice L

- Least Upper Bound ⨆

- Bottom value ⊥ ∈ L

Initial data-flow information for start node
Transfer function f : (L → L) per control-flow graph node
- Denotes the data-flow effect of the CFG node

Framework Overview

Control-flow rules
Root rule(s)

In edge direction of data-flow rules

In property definition

Control-flow graph
- graph

- start node

- reverse beforehand if backward analysis

Lattice instance for data-flow information:
- Lattice L

- Least Upper Bound ⨆

- Bottom value ⊥ ∈ L

Initial data-flow information for start node
Transfer function f : (L → L) per control-flow graph node
- Denotes the data-flow effect of the CFG node

Framework Overview

Control-flow rules
Root rule(s)

In edge direction of data-flow rules

In lattice definition

In property definition

Control-flow graph
- graph

- start node

- reverse beforehand if backward analysis

Lattice instance for data-flow information:
- Lattice L

- Least Upper Bound ⨆

- Bottom value ⊥ ∈ L

Initial data-flow information for start node
Transfer function f : (L → L) per control-flow graph node
- Denotes the data-flow effect of the CFG node

Framework Overview

Control-flow rules
Root rule(s)

In edge direction of data-flow rules

In lattice definition

In property definition

In special data-flow rule

Control-flow graph
- graph

- start node

- reverse beforehand if backward analysis

Lattice instance for data-flow information:
- Lattice L

- Least Upper Bound ⨆

- Bottom value ⊥ ∈ L

Initial data-flow information for start node
Transfer function f : (L → L) per control-flow graph node
- Denotes the data-flow effect of the CFG node

Framework Overview

Control-flow rules
Root rule(s)

In edge direction of data-flow rules

In lattice definition

In property definition

In special data-flow rule

In data-flow rule

Variants of Data-Flow Analysis

Many interacting features

Variants of Data-Flow Analysis

Many interacting features
- Intra-procedural or inter-procedural

Variants of Data-Flow Analysis

Many interacting features
- Intra-procedural or inter-procedural
‣ Inter-procedural with dynamic dispatch means dynamic control flow

analysis depending on the data-flow analysis

Variants of Data-Flow Analysis

Many interacting features
- Intra-procedural or inter-procedural
‣ Inter-procedural with dynamic dispatch means dynamic control flow

analysis depending on the data-flow analysis
- Flow-insensitive, flow-sensitive or even path-sensitive

Variants of Data-Flow Analysis

Many interacting features
- Intra-procedural or inter-procedural
‣ Inter-procedural with dynamic dispatch means dynamic control flow

analysis depending on the data-flow analysis
- Flow-insensitive, flow-sensitive or even path-sensitive
- Different kind of context-sensitivity for dynamic dispatch

Variants of Data-Flow Analysis

Many interacting features
- Intra-procedural or inter-procedural
‣ Inter-procedural with dynamic dispatch means dynamic control flow

analysis depending on the data-flow analysis
- Flow-insensitive, flow-sensitive or even path-sensitive
- Different kind of context-sensitivity for dynamic dispatch
‣ Different contexts for the same program point are separately tracked

Variants of Data-Flow Analysis

Many interacting features
- Intra-procedural or inter-procedural
‣ Inter-procedural with dynamic dispatch means dynamic control flow

analysis depending on the data-flow analysis
- Flow-insensitive, flow-sensitive or even path-sensitive
- Different kind of context-sensitivity for dynamic dispatch
‣ Different contexts for the same program point are separately tracked
‣ Call-sensitivity: limited “stacktrace”, call-path is tracked

Variants of Data-Flow Analysis

Many interacting features
- Intra-procedural or inter-procedural
‣ Inter-procedural with dynamic dispatch means dynamic control flow

analysis depending on the data-flow analysis
- Flow-insensitive, flow-sensitive or even path-sensitive
- Different kind of context-sensitivity for dynamic dispatch
‣ Different contexts for the same program point are separately tracked
‣ Call-sensitivity: limited “stacktrace”, call-path is tracked
‣ Object-sensitivity: objects are tracked by the allocation point in the

program

Variants of Data-Flow Analysis

Many interacting features
- Intra-procedural or inter-procedural
‣ Inter-procedural with dynamic dispatch means dynamic control flow

analysis depending on the data-flow analysis
- Flow-insensitive, flow-sensitive or even path-sensitive
- Different kind of context-sensitivity for dynamic dispatch
‣ Different contexts for the same program point are separately tracked
‣ Call-sensitivity: limited “stacktrace”, call-path is tracked
‣ Object-sensitivity: objects are tracked by the allocation point in the

program

Variants of Data-Flow Analysis

Many interacting features
- Intra-procedural or inter-procedural
‣ Inter-procedural with dynamic dispatch means dynamic control flow

analysis depending on the data-flow analysis
- Flow-insensitive, flow-sensitive or even path-sensitive
- Different kind of context-sensitivity for dynamic dispatch
‣ Different contexts for the same program point are separately tracked
‣ Call-sensitivity: limited “stacktrace”, call-path is tracked
‣ Object-sensitivity: objects are tracked by the allocation point in the

program

Variants of Data-Flow Analysis

Many interacting features
- Intra-procedural or inter-procedural
‣ Inter-procedural with dynamic dispatch means dynamic control flow

analysis depending on the data-flow analysis
- Flow-insensitive, flow-sensitive or even path-sensitive
- Different kind of context-sensitivity for dynamic dispatch
‣ Different contexts for the same program point are separately tracked
‣ Call-sensitivity: limited “stacktrace”, call-path is tracked
‣ Object-sensitivity: objects are tracked by the allocation point in the

program

Variants of Data-Flow Analysis

Worklist Optimizations
in FlowSpec

Worklist Algorithm Optimizations

Filter irrelevant CFG nodes

Worklist Algorithm Optimizations

Filter irrelevant CFG nodes
- With transfer function tf(x) = x

Worklist Algorithm Optimizations

Filter irrelevant CFG nodes
- With transfer function tf(x) = x

Order nodes

Worklist Algorithm Optimizations

Filter irrelevant CFG nodes
- With transfer function tf(x) = x

Order nodes
- Topological order would make sense

Worklist Algorithm Optimizations

Filter irrelevant CFG nodes
- With transfer function tf(x) = x

Order nodes
- Topological order would make sense
- But there are cycles in our graphs

Worklist Algorithm Optimizations

Filter irrelevant CFG nodes
- With transfer function tf(x) = x

Order nodes
- Topological order would make sense
- But there are cycles in our graphs
- Every cycle should be computed to a fixpoint

Worklist Algorithm Optimizations

Filter irrelevant CFG nodes
- With transfer function tf(x) = x

Order nodes
- Topological order would make sense
- But there are cycles in our graphs
- Every cycle should be computed to a fixpoint
‣ Really we need each strongly connected component (SCC)

Worklist Algorithm Optimizations

Filter irrelevant CFG nodes
- With transfer function tf(x) = x

Order nodes
- Topological order would make sense
- But there are cycles in our graphs
- Every cycle should be computed to a fixpoint
‣ Really we need each strongly connected component (SCC)

- Tarjan’s SCCs algorithm gives SCCs in reverse topological order!

Worklist Algorithm Optimizations

Filter irrelevant CFG nodes
- With transfer function tf(x) = x

Order nodes
- Topological order would make sense
- But there are cycles in our graphs
- Every cycle should be computed to a fixpoint
‣ Really we need each strongly connected component (SCC)

- Tarjan’s SCCs algorithm gives SCCs in reverse topological order!
- Within each SCC the order should also not be random:

Worklist Algorithm Optimizations

Filter irrelevant CFG nodes
- With transfer function tf(x) = x

Order nodes
- Topological order would make sense
- But there are cycles in our graphs
- Every cycle should be computed to a fixpoint
‣ Really we need each strongly connected component (SCC)

- Tarjan’s SCCs algorithm gives SCCs in reverse topological order!
- Within each SCC the order should also not be random:
‣ We use the reverse post-order of the spanning tree

Worklist Algorithm Optimizations

Tarjan’s SCC algorithm

Strongly Connected Component (SCC) identification

Tarjan’s SCC algorithm

Strongly Connected Component (SCC) identification
- Label nodes with a increasing integers during a depth-first searches

Tarjan’s SCC algorithm

Strongly Connected Component (SCC) identification
- Label nodes with a increasing integers during a depth-first searches
‣ Multiple searches to make sure you reach all nodes in the graph

Tarjan’s SCC algorithm

Strongly Connected Component (SCC) identification
- Label nodes with a increasing integers during a depth-first searches
‣ Multiple searches to make sure you reach all nodes in the graph

- The depth-first spanning forest (spanning trees from the searches)
holds SCCs as subtrees

Tarjan’s SCC algorithm

Strongly Connected Component (SCC) identification
- Label nodes with a increasing integers during a depth-first searches
‣ Multiple searches to make sure you reach all nodes in the graph

- The depth-first spanning forest (spanning trees from the searches)
holds SCCs as subtrees

- Nodes that can reach the same lowest label are an SCC together

Tarjan’s SCC algorithm

Strongly Connected Component (SCC) identification
- Label nodes with a increasing integers during a depth-first searches
‣ Multiple searches to make sure you reach all nodes in the graph

- The depth-first spanning forest (spanning trees from the searches)
holds SCCs as subtrees

- Nodes that can reach the same lowest label are an SCC together

The version in FlowSpec is slightly adapted

Tarjan’s SCC algorithm

Strongly Connected Component (SCC) identification
- Label nodes with a increasing integers during a depth-first searches
‣ Multiple searches to make sure you reach all nodes in the graph

- The depth-first spanning forest (spanning trees from the searches)
holds SCCs as subtrees

- Nodes that can reach the same lowest label are an SCC together

The version in FlowSpec is slightly adapted
- To return the topological order instead of the reverse topo order

Tarjan’s SCC algorithm

Strongly Connected Component (SCC) identification
- Label nodes with a increasing integers during a depth-first searches
‣ Multiple searches to make sure you reach all nodes in the graph

- The depth-first spanning forest (spanning trees from the searches)
holds SCCs as subtrees

- Nodes that can reach the same lowest label are an SCC together

The version in FlowSpec is slightly adapted
- To return the topological order instead of the reverse topo order
- To have reverse postorder inside SCCs

Tarjan’s SCC algorithm

CFG filtering

CFG filtering

CFG filtering

Tarjan’s SCC algorithm

Tarjan’s SCC algorithm

1

Tarjan’s SCC algorithm

1

Tarjan’s SCC algorithm

1,1

1

Tarjan’s SCC algorithm

1,1

1
2

Tarjan’s SCC algorithm

1,1

1
2

Tarjan’s SCC algorithm

1,1 2,2

1
2

Tarjan’s SCC algorithm

1,1 2,2

1
2
3

Tarjan’s SCC algorithm

1,1 2,2

1
2
3

Tarjan’s SCC algorithm

1,1 2,2 3,3

1
2
3

Tarjan’s SCC algorithm

1,1 2,2 3,3

1
2
3

Tarjan’s SCC algorithm

1,1 2,2 3,3

1
2
3

Tarjan’s SCC algorithm

1,1 2,2 3,3

1
2

Tarjan’s SCC algorithm

1,1 2,2 3,3

1
2

Tarjan’s SCC algorithm

1,1 2,2 3,3

1
2
4

Tarjan’s SCC algorithm

1,1 2,2 3,3

1
2
4

Tarjan’s SCC algorithm

1,1 2,2 3,3

4,4

1
2
4

Tarjan’s SCC algorithm

1,1 2,2 3,3

4,4

1
2
4

Tarjan’s SCC algorithm

1,1 2,2 3,3

4,44,2

1
2
4

Tarjan’s SCC algorithm

1,1 2,2 3,3

4,44,2

1
2
4
5

Tarjan’s SCC algorithm

1,1 2,2 3,3

4,44,2

1
2
4
5

Tarjan’s SCC algorithm

1,1 2,2 3,3

4,4 5,54,2

1
2
4
5

Tarjan’s SCC algorithm

1,1 2,2 3,3

4,4 5,54,2

1
2
4
5
6

Tarjan’s SCC algorithm

1,1 2,2 3,3

4,4 5,54,2

1
2
4
5
6

Tarjan’s SCC algorithm

1,1 2,2 3,3

4,4 5,5 6,64,2

1
2
4
5
6

Tarjan’s SCC algorithm

1,1 2,2 3,3

4,4 5,5 6,64,2

1
2
4
5
6

Tarjan’s SCC algorithm

1,1 2,2 3,3

4,4 5,5 6,64,2 6,4

1
2
4
5
6

Tarjan’s SCC algorithm

6,44,2

1,1 2,2 3,3

5,5

1
2
4
5
6

Tarjan’s SCC algorithm

6,44,2

1,1 2,2 3,3

5,5

1
2
4
5
6

Tarjan’s SCC algorithm

6,44,2

1,1 2,2 3,3

5,55,4

1
2
4
5
6

Tarjan’s SCC algorithm

6,44,2

1,1 2,2 3,3

5,55,4

1
2
4
5
6

Tarjan’s SCC algorithm

6,44,2

1,1 2,2 3,3

5,55,4

1
2
4
5
6

Tarjan’s SCC algorithm

6,44,2

1,1 2,2 3,3

5,55,4

1
2
4
5
6

Tarjan’s SCC algorithm

6,44,2

1,1 2,2 3,3

5,55,4

1
2
4
5
6

Tarjan’s SCC algorithm

6,44,2

1,1 2,2 3,3

5,55,4

1
2
4
5

Tarjan’s SCC algorithm

6,44,2

1,1 2,2 3,3

5,55,4

1
2
4

Tarjan’s SCC algorithm

6,44,2

1,1 2,2 3,3

5,55,4

1
2

Tarjan’s SCC algorithm

6,44,2

1,1 2,2 3,3

5,55,4

1

Tarjan’s SCC algorithm

6,44,2

1,1 2,2 3,3

5,55,4

1

Tarjan’s SCC algorithm

6,44,2

1,1 2,2 3,3

5,55,4

1

Tarjan’s SCC algorithm

6,44,2

1,1 2,2 3,3

5,55,4

Reverse postorder in SCC

Reverse postorder in SCC

1

Reverse postorder in SCC

1 2

Reverse postorder in SCC

1 2

3

Reverse postorder in SCC

1 2

3 4

Reverse postorder in SCC

1 2

3 4 5

Reverse postorder in SCC

1 2

3 4 5

6

Reverse postorder in SCC

1 2

3 4 5

6

7

Reverse postorder in SCC

1 2

3 4 5

6

7 8

Reverse postorder in SCC

1 2

3 4 5

6

7 8 9

Reverse postorder in SCC

1 2

3 4 5

6

7 8 9

10

Conclusion

Summary

Data-flow analysis and its uses

Summary

Data-flow analysis and its uses
- Sets are not enough

Summary

Data-flow analysis and its uses
- Sets are not enough
- Lattices are the generalisation

Summary

Data-flow analysis and its uses
- Sets are not enough
- Lattices are the generalisation

Monotone Frameworks

Summary

Data-flow analysis and its uses
- Sets are not enough
- Lattices are the generalisation

Monotone Frameworks
- Finite height lattices + monotone transfer functions = termination

Summary

Data-flow analysis and its uses
- Sets are not enough
- Lattices are the generalisation

Monotone Frameworks
- Finite height lattices + monotone transfer functions = termination
- Execute by worklist algorithm

Summary

Data-flow analysis and its uses
- Sets are not enough
- Lattices are the generalisation

Monotone Frameworks
- Finite height lattices + monotone transfer functions = termination
- Execute by worklist algorithm

FlowSpec design

Summary

Data-flow analysis and its uses
- Sets are not enough
- Lattices are the generalisation

Monotone Frameworks
- Finite height lattices + monotone transfer functions = termination
- Execute by worklist algorithm

FlowSpec design
- FlowSpec only does intra-procedural, flow-sensitive analysis

Summary

Data-flow analysis and its uses
- Sets are not enough
- Lattices are the generalisation

Monotone Frameworks
- Finite height lattices + monotone transfer functions = termination
- Execute by worklist algorithm

FlowSpec design
- FlowSpec only does intra-procedural, flow-sensitive analysis
- Worklist algorithm with optimisations:

Summary

Data-flow analysis and its uses
- Sets are not enough
- Lattices are the generalisation

Monotone Frameworks
- Finite height lattices + monotone transfer functions = termination
- Execute by worklist algorithm

FlowSpec design
- FlowSpec only does intra-procedural, flow-sensitive analysis
- Worklist algorithm with optimisations:
‣ SCCs, reverse post-order within SCC, CFG filtering

Summary

94

Except where otherwise noted, this work is licensed under

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

