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Reading Material

The following papers add background, conceptual exposition, 
and examples to the material from the slides. Some notation and 
technical details have been changed; check the documentation.
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This paper introduces FlowSpec, the declarative data-flow 
analysis specification language in Spoofax. Although the 
design of the language described in this paper is still current, 
the syntax used is already dated, i.e. the current FlowSpec 
syntax in Spoofax is slightly different.

https://doi.org/10.1145/3136014.3136029

SLE 2017

https://doi.org/10.1145/3136014.3136029
https://doi.org/10.1145/3136014.3136029


Journal version of the SLE paper.


This paper introduces FlowSpec, the declarative data-flow 
analysis specification language in Spoofax. 


https://doi.org/10.1016/j.cola.2019.100924

Journal of Computer Languages 2020
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Documentation for FlowSpec 
at the metaborg.org website.

http://www.metaborg.org/en/latest/source/langdev/meta/lang/flowspec/index.html

http://metaborg.org
http://metaborg.org
http://www.metaborg.org/en/latest/source/langdev/meta/lang/flowspec/index.html
http://www.metaborg.org/en/latest/source/langdev/meta/lang/flowspec/index.html
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Available Expressions

let

  var x : int ":= a + b

  var y : int ":= a * b

 in

  while y > a + b then

    (

      a ":= a + 1;

      x ":= a + b

    )

end



Available Expressions

let

  var x : int ":= a + b

  var y : int ":= a * b

 in

  while y > a + b then

    (

      a ":= a + 1;

      x ":= a + b

    )

end

- a + b is already computed when you get to the condition 
- There is no need to compute it again



Live Variables

x ":= 2;

y ":= 4;

x ":= 1;

if y > x then

  z ":= y

else

  z ":= y * y;

x ":= z



Live Variables

x ":= 2;

y ":= 4;

x ":= 1;

if y > x then

  z ":= y

else

  z ":= y * y;

x ":= z

The first value of x is never observed, 
because it isn’t read after the assignment
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Flow-Sensitive Types

void hello(String? name) {

    if (is String name) {

        "// name is of type String here

        print("Hello, ``name``!");

    }

    else {

        print("Hello, world!");

    }

}



Flow-Sensitive Types

void hello(String? name) {

    if (is String name) {

        "// name is of type String here

        print("Hello, ``name``!");

    }

    else {

        print("Hello, world!");

    }

}

- Ceylon (https://ceylon-lang.org/) 
- Union and intersection types 
- String? ≡ String | Null 
- is like Java’s instanceof 
- General name: path-sensitive data-flow analysis

https://ceylon-lang.org/
https://ceylon-lang.org/
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Static approximation of runtime behaviour
- What has or will be computed
- What extra invariants do some data adhere to
- Data dependence between data/variables where the data lives

What is Data-Flow Analysis?



Reaching Definitions

let

  var x : int ":= 5

  var y : int ":= 1

 in

  while x > 1 do

    (

      y ":= x * 2;

      x ":= y - 1

    )

end

- The inverse relation of live variables 
- RD gives us the possible origins of the current value of a variable



Reaching Definitions

let

  var x : int ":= 5

  var y : int ":= 1

 in

  while x > 1 do

    (

      y ":= x * 2;

      x ":= y - 1

    )

end

x↦2
x↦2;y↦3

x↦2,8;y↦3,7

x↦2,8;y↦7
x↦8;y↦7

- Analysis result is a multi-map (shown here after each statement) 
- Propagate information along the control-flow graph

1
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5
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Reaching Definitions

let

  var x : int ":= 5

  var y : int ":= 1

 in

  while x > 1 do

    (

      y ":= x * 2;

      x ":= y - 1

    )

end

x↦2
x↦2;y↦3

x↦2,8;y↦3,7

x↦2,8;y↦7
x↦8;y↦7

- Analysis result is a set of pairs (shown here after each statement) 
- Propagate information along the control-flow graph

1
2
3
4
5
6
7
8
9

10

{(x,2)}
{(x,2) (y,3)}

{(x,2) (x,8) (y,3) (y,7)}

{(x,2) (x,8) (y,7)}
{(x,8) (y,7)}
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What is Control-Flow?
- “Order of evaluation”

Discuss a series of example programs
- What is the control flow?
- What constructs in the program determine that?

Control-Flow



What is Control-Flow?

function id(x) { return x; }
id(4); id(true);



What is Control-Flow?

function id(x) { return x; }
id(4); id(true);

Function calls



What is Control-Flow?

function id(x) { return x; }
id(4); id(true);

- Calling a function passes control to that function

- A return passes control back to the caller

Function calls



What is Control-Flow?

if (c) { a = 5 } else { a = "four" }



What is Control-Flow?

if (c) { a = 5 } else { a = "four" }

Branching



What is Control-Flow?

if (c) { a = 5 } else { a = "four" }

- Control is passed to one of the two branches

- This is dependent on the value of the condition

Branching



What is Control-Flow?

while (c) { a = 5 }



What is Control-Flow?

while (c) { a = 5 }

Looping



What is Control-Flow?

while (c) { a = 5 }

- Control is passed to the loop body depending on the condition

- After the body we start over

Looping



What is Control-Flow?

function1(a);
function2(b);



What is Control-Flow?

function1(a);
function2(b);

Sequence



What is Control-Flow?

function1(a);
function2(b);

- No conditions or anything complicated

- But still order of execution

Sequence



What is Control-Flow?

distance = distance + 1;



What is Control-Flow?

distance = distance + 1;

Reads and Writes



What is Control-Flow?

distance = distance + 1;

- The expression needs to be evaluated, before we can save its result 

Reads and Writes



What is Control-Flow?

int i = 2;
int j = (i=3) * i;



What is Control-Flow?

int i = 2;
int j = (i=3) * i;

Expressions & side-effects



What is Control-Flow?

int i = 2;
int j = (i=3) * i;

- Order in sub-expressions is usually undefined

- Side-effects make sub-expression order relevant

Expressions & side-effects
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- Sequential	 statements
- Conditional	 if / switch / case
- Looping	 while / do while / for / foreach / loop
- Exceptions	 throw / try / catch / finally
- Continuations	 call/cc
- Async-await	 threading
- Coroutines / Generators	 yield
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- Sequential	 statements
- Conditional	 if / switch / case
- Looping	 while / do while / for / foreach / loop
- Exceptions	 throw / try / catch / finally
- Continuations	 call/cc
- Async-await	 threading
- Coroutines / Generators	 yield
- Dispatch	 function calls / method calls

Kinds of Control-Flow



- Sequential	 statements
- Conditional	 if / switch / case
- Looping	 while / do while / for / foreach / loop
- Exceptions	 throw / try / catch / finally
- Continuations	 call/cc
- Async-await	 threading
- Coroutines / Generators	 yield
- Dispatch	 function calls / method calls
- Loop jumps	 break / continue
- ... many more ...	

Kinds of Control-Flow



Why Control-Flow?



Shorter code
- No need to repeat the same statement 10 times
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Shorter code
- No need to repeat the same statement 10 times

Parametric code
- Extract reusable patterns
- Let user decide repetition amount

Expressive power
- Playing with Turing Machines

Reason about program execution
- What happens when?
- In what order?

Why Control-Flow?
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Imperative programming
- Explicit control-flow constructs

Control-Flow and Language Design
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Declarative programming
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Imperative programming
- Explicit control-flow constructs

Declarative programming
- What, not how
- Less explicit control-flow
- More options for compilers to choose order
- Great if your compiler is often smarter than the programmer

Control-Flow and Language Design



Separation of Concerns in Data-Flow Analysis



Representation
- Represent control-flow of a program
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Representation
- Represent control-flow of a program
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Representation
- Represent control-flow of a program
- Conduct and represent results of data-flow analysis

Declarative Rules
- To define control-flow of a language
- To define data-flow of a language

Language-Independent Tooling
- Data-Flow Analysis
- Errors/Warnings
- Code completion 
- Refactoring
- Optimisation
- …

Separation of Concerns in Data-Flow Analysis



Control-Flow Graphs



What is a Control-Flow Graph?

A control flow graph (CFG) in computer science is a representation, 
using graph notation, of all paths that might be traversed through a 
program during its execution.

https://en.wikipedia.org/wiki/Control_flow_graph

https://en.wikipedia.org/wiki/Control_flow_graph
https://en.wikipedia.org/wiki/Control_flow_graph


Control-Flow Graph Example

let

  var x : int ":= a + b

  var y : int ":= a * b

 in

  while y > a + b do

    (

      a ":= a + 1;

      x ":= a + b

    )

end



Control-Flow Graph Example

y > a + b

var y : int := a * b

var x : int := a + b

a := a + 1

x := a + b

let

  var x : int ":= a + b

  var y : int ":= a * b

 in

  while y > a + b do

    (

      a ":= a + 1;

      x ":= a + b

    )

end



Basic Blocks

var x : int := a + b
var y : int := a * b

y > a + b

a := a + 1
x := a + b

let

  var x : int ":= a + b

  var y : int ":= a * b

 in

  while y > a + b do

    (

      a ":= a + 1;

      x ":= a + b

    )

end



Control Flow Graphs



Nodes
- Usually innermost statements and expressions
- Or blocks for consecutive statements (basic blocks)

Control Flow Graphs



Nodes
- Usually innermost statements and expressions
- Or blocks for consecutive statements (basic blocks)

Edges
- Back edges: show loops
- Splits: conditionally split the control flow
- Merges: combine previously split control flow

Control Flow Graphs



Equivalent to Unstructured Control-Flow

    a ← 0

L1: b ← a + 1 

    c ← c + b

    a ← 2 * b

    if a < N goto L1

    return c

a ← 0

b ← a + 1

c ← c + b

a ← 2 * b

a < N

return c



Representation 
- Represent control-flow of a program

- Conduct and represent results of data-flow analysis


Declarative Rules 
- To define control-flow of a language

- To define data-flow of a language


Language-Independent Tooling 
- Data-Flow Analysis

- Errors/Warnings

- Code completion 

- Refactoring

- Optimisation

- …

Separation of Concerns in Data-Flow Analysis



Representation 
-  

- Conduct and represent results of data-flow analysis


Declarative Rules 
- To define control-flow of a language

- To define data-flow of a language


Language-Independent Tooling 
- Data-Flow Analysis

- Errors/Warnings

- Code completion 

- Refactoring

- Optimisation

- …

Separation of Concerns in Data-Flow Analysis

Control Flow Graphs (CFGs)
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What is Data-Flow?
- Possible values (data) that flow through the program
- Relations between those data (data dependence)

Discuss a series of example programs
- What is wrong or can be optimised?
- What is the flow we can use for this?

Data-Flow



What is Data-Flow?
- Possible values (data) that flow through the program
- Relations between those data (data dependence)

Discuss a series of example programs
- What is wrong or can be optimised?
- What is the flow we can use for this?
- What would the data-flow information look like?

Data-Flow



What is wrong here?

public int ComputeFac(int num) {

    return num;

    int num_aux;

    if (num < 1)

        num_aux = 1;

    else

        num_aux = num * this.ComputeFac(num-1);

    return num_aux;

}



What is wrong here?

public int ComputeFac(int num) {

    return num;

    int num_aux;

    if (num < 1)

        num_aux = 1;

    else

        num_aux = num * this.ComputeFac(num-1);

    return num_aux;

}

Dead code (control-flow)



What is wrong here?

public int ComputeFac(int num) {

    return num;

    int num_aux;

    if (num < 1)

        num_aux = 1;

    else

        num_aux = num * this.ComputeFac(num-1);

    return num_aux;

}

- Most of the code is never reached because of the early return

- This is usually considered an error by compilers

Dead code (control-flow)
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x ":= 2;

y ":= 4;

x ":= 1;

"// x and y used later
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- The first value of x is never observed

- This is sometimes warned about by compilers

Dead code (data-flow)



What is “wrong” here?

x ":= 2;

y ":= 4;

x ":= 1;

"// x and y used later

- The first value of x is never observed

- This is sometimes warned about by compilers

Dead code (data-flow)

Live variable analysis
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let

  var x : int ":= a + b

  var y : int ":= a * b

 in
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    )

end
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What is suboptimal here?

let

  var x : int ":= a + b

  var y : int ":= a * b

 in

  if y > a + b then

    (

      a ":= a + 1;

      x ":= a + b

    )

end

- a + b is already computed when you get to the condition

- There is no need to compute it again

Common subexpression elimination

Available expression analysis



What is suboptimal here?

for i ":= 1 to 100 do

  (

    x[i] ":= y[i];

    if w > 0 then

      y[i] ":= 0

  )
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for i ":= 1 to 100 do

  (

    x[i] ":= y[i];

    if w > 0 then

      y[i] ":= 0

  )

- The if condition is not dependent on i, x or y

- Still it is checked in the loop, which is slowing the loop

Loop unswitching



What is suboptimal here?

for i ":= 1 to 100 do

  (

    x[i] ":= y[i];

    if w > 0 then

      y[i] ":= 0

  )

- The if condition is not dependent on i, x or y

- Still it is checked in the loop, which is slowing the loop

Loop unswitching

Data-dependence analysis
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Control Flow Graphs (CFGs)
Data-flow information on CFG nodes



Representation 
-  

- Conduct and represent results of data-flow analysis


Declarative Rules 
- To define control-flow of a language

- To define data-flow of a language


Language-Independent Tooling 
- Data-Flow Analysis

- Errors/Warnings

- Code completion 

- Refactoring

- Optimisation

- …

Separation of Concerns in Data-Flow Analysis

Control Flow Graphs (CFGs)

A domain-specific meta-language for Spoofax: FlowSpec

Data-flow information on CFG nodes



Tiger in FlowSpec
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Map abstract syntax to control-flow (sub)graphs
- Match an AST pattern
- List all CFG edges of that AST
- Mark subtrees as CFG nodes
- Or splice in their control-flow subgraph
- Use special “context” nodes to connect subgraph to outside graph

Control-Flow Rules



Control-Flow Graphs in FlowSpec
FlowSpec Example program

x ":= 1;


if y > x then


  z ":= y;


else


  z ":= y * y;


y ":= a * b;


while y > a + b do


 (a ":= a + 1;


  x ":= a + b)



root Mod(s) =

  start "-> s,

  s "-> end
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  z ":= y * y;


y ":= a * b;
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  start "-> s,

  s "-> end
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FlowSpec Example program

x ":= 1;


if y > x then


  z ":= y;


else


  z ":= y * y;


y ":= a * b;


while y > a + b do


 (a ":= a + 1;


  x ":= a + b)



a@Assign(_, _) =

  entry "-> node a "-> exit

root Mod(s) =

  start "-> s,

  s "-> end

root Mod(s) =

  start "-> s "-> end
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start
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FlowSpec Example program

x ":= 1;


if y > x then


  z ":= y;


else


  z ":= y * y;


y ":= a * b;


while y > a + b do


 (a ":= a + 1;


  x ":= a + b)



a@Assign(_, _) =

  entry "-> node a "-> exit
Assign(_, _) =

  entry "-> this "-> exit

root Mod(s) =

  start "-> s,

  s "-> end

root Mod(s) =

  start "-> s "-> end

Control-Flow Graphs in FlowSpec

start

end

FlowSpec Example program

x ":= 1;


if y > x then


  z ":= y;


else


  z ":= y * y;


y ":= a * b;


while y > a + b do


 (a ":= a + 1;


  x ":= a + b)



a@Assign(_, _) =

  entry "-> node a "-> exit
Assign(_, _) =

  entry "-> this "-> exit
node Assign(_, _)


root Mod(s) =

  start "-> s,

  s "-> end

root Mod(s) =

  start "-> s "-> end

Control-Flow Graphs in FlowSpec

start

end

FlowSpec Example program

x ":= 1;


if y > x then


  z ":= y;


else


  z ":= y * y;


y ":= a * b;


while y > a + b do


 (a ":= a + 1;


  x ":= a + b)



a@Assign(_, _) =

  entry "-> node a "-> exit
Assign(_, _) =

  entry "-> this "-> exit
node Assign(_, _)


Seq(s1, s2) =

  entry "-> s1 "-> s2 "-> exit

root Mod(s) =

  start "-> s,

  s "-> end

root Mod(s) =

  start "-> s "-> end

Control-Flow Graphs in FlowSpec

start

end

FlowSpec Example program

x ":= 1;


if y > x then


  z ":= y;


else


  z ":= y * y;


y ":= a * b;


while y > a + b do


 (a ":= a + 1;


  x ":= a + b)



a@Assign(_, _) =

  entry "-> node a "-> exit
Assign(_, _) =

  entry "-> this "-> exit
node Assign(_, _)


Seq(s1, s2) =

  entry "-> s1 "-> s2 "-> exit

root Mod(s) =

  start "-> s,

  s "-> end

root Mod(s) =

  start "-> s "-> end

Control-Flow Graphs in FlowSpec

start

end

FlowSpec Example program

x ":= 1;


if y > x then


  z ":= y;


else


  z ":= y * y;


y ":= a * b;


while y > a + b do


 (a ":= a + 1;


  x ":= a + b)



a@Assign(_, _) =

  entry "-> node a "-> exit
Assign(_, _) =

  entry "-> this "-> exit
node Assign(_, _)


IfThenElse(c, t, e) =

  entry "-> node c "-> t "-> exit, 

           node c "-> e "-> exit

Seq(s1, s2) =
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FlowSpec
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gen(Assign(var, e1)) :=
  { e2 ∈ SE(e1) | var ∉ FV(e2) }
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Available Expressions

gen(Assign(var, e1)) :=
  { e2 ∈ SE(e1) | var ∉ FV(e2) }

“An expression is available if it must have already been computed, and not later 
modified, on all paths to the program point”

kill(Assign(var, e1)) :=
  { e2 ∈ AllAE | var ∈ FV(e2) } {a + b}

{a + b, a * b}
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Available Expressions

gen(Assign(var, e1)) :=
  { e2 ∈ SE(e1) | var ∉ FV(e2) }

“An expression is available if it must have already been computed, and not later 
modified, on all paths to the program point”

kill(Assign(var, e1)) :=
  { e2 ∈ AllAE | var ∈ FV(e2) } {a + b}

{a + b, a * b}

{}

{a + b, a * b}

{}

{a + b}

x := a + b

y := a * b

y > a + b

a := a + 1

x := a + b

previousSet ∖ kill(currentNode) ∪ gen(currentNode)
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“A variable is live if there exists a path from there to a use of the variable, with no 
re-definition of the variable on that path. ”
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Live Variables

kill(Assign(var, e1)) :=
  { var }

gen(Assign(var, e1)) :=
  { FV(e1) }

gen(b@BinOp(_, _, _)) :=
  { FV(b) }

gen(u@UnOp(_, _)) :=
  { FV(u) }
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x := 2

“A variable is live if there exists a path from there to a use of the variable, with no 
re-definition of the variable on that path. ”
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Live Variables

kill(Assign(var, e1)) :=
  { var }

gen(Assign(var, e1)) :=
  { FV(e1) }

gen(b@BinOp(_, _, _)) :=
  { FV(b) }

gen(u@UnOp(_, _)) :=
  { FV(u) }

{}

{z}

y := 4

x := 1

y > 0

z := x
z := y * y

x := z

x := 2

“A variable is live if there exists a path from there to a use of the variable, with no 
re-definition of the variable on that path. ”

previousSet ∖ kill(currentNode) ∪ gen(currentNode)



Live Variables

kill(Assign(var, e1)) :=
  { var }

gen(Assign(var, e1)) :=
  { FV(e1) }

gen(b@BinOp(_, _, _)) :=
  { FV(b) }

gen(u@UnOp(_, _)) :=
  { FV(u) }

{}

{z}

{y}

y := 4

x := 1

y > 0

z := x
z := y * y

x := z

x := 2

“A variable is live if there exists a path from there to a use of the variable, with no 
re-definition of the variable on that path. ”

previousSet ∖ kill(currentNode) ∪ gen(currentNode)



Live Variables

kill(Assign(var, e1)) :=
  { var }

gen(Assign(var, e1)) :=
  { FV(e1) }

gen(b@BinOp(_, _, _)) :=
  { FV(b) }

gen(u@UnOp(_, _)) :=
  { FV(u) }

{}

{z}

{y}

{x}

y := 4

x := 1

y > 0

z := x
z := y * y

x := z

x := 2

“A variable is live if there exists a path from there to a use of the variable, with no 
re-definition of the variable on that path. ”

previousSet ∖ kill(currentNode) ∪ gen(currentNode)



Live Variables

kill(Assign(var, e1)) :=
  { var }

gen(Assign(var, e1)) :=
  { FV(e1) }

gen(b@BinOp(_, _, _)) :=
  { FV(b) }

gen(u@UnOp(_, _)) :=
  { FV(u) }

{}

{z}

{y}

{x} {x,y}

y := 4

x := 1

y > 0

z := x
z := y * y

x := z

x := 2

“A variable is live if there exists a path from there to a use of the variable, with no 
re-definition of the variable on that path. ”

previousSet ∖ kill(currentNode) ∪ gen(currentNode)



Live Variables

kill(Assign(var, e1)) :=
  { var }

gen(Assign(var, e1)) :=
  { FV(e1) }

gen(b@BinOp(_, _, _)) :=
  { FV(b) }

gen(u@UnOp(_, _)) :=
  { FV(u) }

{}
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{y}
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y > 0
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x := z

x := 2

“A variable is live if there exists a path from there to a use of the variable, with no 
re-definition of the variable on that path. ”

previousSet ∖ kill(currentNode) ∪ gen(currentNode)



Live Variables

kill(Assign(var, e1)) :=
  { var }

gen(Assign(var, e1)) :=
  { FV(e1) }

gen(b@BinOp(_, _, _)) :=
  { FV(b) }

gen(u@UnOp(_, _)) :=
  { FV(u) }

{}

{z}

{y}

{x} {x,y}

{x,y}

{y}
y := 4

x := 1

y > 0

z := x
z := y * y

x := z

x := 2

“A variable is live if there exists a path from there to a use of the variable, with no 
re-definition of the variable on that path. ”

previousSet ∖ kill(currentNode) ∪ gen(currentNode)



Live Variables

kill(Assign(var, e1)) :=
  { var }

gen(Assign(var, e1)) :=
  { FV(e1) }

gen(b@BinOp(_, _, _)) :=
  { FV(b) }

gen(u@UnOp(_, _)) :=
  { FV(u) }

{}

{z}

{y}

{x} {x,y}

{x,y}

{y}

{}
y := 4

x := 1

y > 0

z := x
z := y * y

x := z

x := 2

“A variable is live if there exists a path from there to a use of the variable, with no 
re-definition of the variable on that path. ”

previousSet ∖ kill(currentNode) ∪ gen(currentNode)



Live Variables

kill(Assign(var, e1)) :=
  { var }

gen(Assign(var, e1)) :=
  { FV(e1) }

gen(b@BinOp(_, _, _)) :=
  { FV(b) }

gen(u@UnOp(_, _)) :=
  { FV(u) }

{}

{z}

{y}

{x} {x,y}

{x,y}

{y}

{}
y := 4

x := 1

y > 0

z := x
z := y * y

x := z

x := 2
{}

“A variable is live if there exists a path from there to a use of the variable, with no 
re-definition of the variable on that path. ”

previousSet ∖ kill(currentNode) ∪ gen(currentNode)
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Sets as analysis information
Kill and gen sets per control node type
-previousSet ∖ kill(currentNode) ∪ gen(currentNode)
Can propagate either forward or backward
Can merge information with either union or intersection
- Respectively called may and must analyses

Traditional set based analysis
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 in
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end
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Constant propagation and folding

let

  var a : int ":= 0

  var b : int ":= a + 1

 in

    c ":= c + b;

    a ":= 2 * b

end

let

  var a : int ":= 0

  var b : int ":= 0 + 1

 in

    c ":= c + b;

    a ":= 2 * b

end

single step
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    a ":= 2 * 1

end
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Constant propagation and folding

let

  var a : int ":= 0

  var b : int ":= a + 1

 in

    c ":= c + b;

    a ":= 2 * b

end

a ↦ 0
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a ↦ 2, b ↦ 1, c ↦ ?
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let
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- We need the previous information to compute the current
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let

  var a : int ":= 0

  var b : int ":= a + 1
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end
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Kill/gen doesn’t work here
- We need the previous information to compute the current

Can we use a set for this map?
- Keys map to single values, so no

But what if we keep multiple values?
- Analysing loops may not terminate

Constant propagation and folding

let
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    a ":= 2 * b

end
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let

  var a : int ":= 0

  var b : int ":= a + 1

 in

    while y > a + b do

        a ":= a + 1

end
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Example: Non-termination

let

  var a : int ":= 0

  var b : int ":= a + 1

 in

    while y > a + b do

        a ":= a + 1

end

a ↦ 0

a ↦ 0; b ↦ 1

a ↦ 0; b ↦ 1

a ↦ 0,1; b ↦ 1

a ↦ 0,1; b ↦ 1



Example: Non-termination

let

  var a : int ":= 0

  var b : int ":= a + 1

 in

    while y > a + b do

        a ":= a + 1

end

a ↦ 0

a ↦ 0; b ↦ 1

a ↦ 0; b ↦ 1

a ↦ 0,1; b ↦ 1

a ↦ 0,1; b ↦ 1

a ↦ 0,1,2; b ↦ 1
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The type of the analysis information
- Variables bound to either a particular constant or a marker for non-

constants

The transfer functions per control node
- Basically an interpreter implementation for constants
- Needs to propagate markers when found

Constant propagation and folding
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Data-Flow Analysis needs fixpoint computation
- Because of loops

Termination
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A set X is totally ordered under ≤ if for a, b, c ∈ X
- a ≤ b ∧ b ≤ a  ⇒  a = b (antisymmetry)

- a ≤ b ∧ b ≤ c  ⇒  a ≤ c (transitivity)

- a ≤ b ∨ b ≤ a (totality)

A partial ordering drops the totality constraint
- e.g. subset inclusion:

Lattice Theory
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A Lattice is a partially ordered set where
- every two elements have a unique least upper bound (or supremum or join)
- every two elements have a unique greatest lower bound (or infimum or meet)

Least upper bound (LUB)
- a ⊑ b  ⇔  a ⨆ b = b

- a ⨆ b = c ⇒ a ⊑ c ∧ b ⊑ c

Greatest lower bound (GLB)
- a ⊑ b  ⇔  a ⨅ b = a

- a ⨅ b = c ⇒ c ⊑ a ∧ c ⊑ b

A bounded lattice has a top and bottom
- These are ⊤ and ⊥ respectively
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- It is a safe approximation, 
- because it says we are not sure of anything

Then we can combine data-flow information with ⨆
- It is the most information preserving combination of information
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Transfer functions should be monotone increasing
- i.e. for transfer function f, a ⊑ b ⇒ f(a) ⊑ f(b)

- This includes the identity function

Monotone transfer functions give a termination guarantee
- In a loop we reach a fixpoint if the functions start returning the same thing
- Worst case scenario: the loop reaches ⊤
- This only works if the lattice is of finite height

General interval analysis has an infinite lattice
- ⊤ = [-∞,∞]
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Transfer functions should be monotone increasing
- i.e. for transfer function f, a ⊑ b ⇒ f(a) ⊑ f(b)

- This includes the identity function

Monotone transfer functions give a termination guarantee
- In a loop we reach a fixpoint if the functions start returning the same thing
- Worst case scenario: the loop reaches ⊤
- This only works if the lattice is of finite height

General interval analysis has an infinite lattice
- ⊤ = [-∞,∞]
- If a loop adds a finite number to a variable, you never get to ∞

Lattices for Data-Flow Analysis
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An analysis consists of 
- The type of the analysis information, and the lattice instance for 

that type

- The transfer functions that express the ‘effect’ of a control node

‣These should be monotone with respect to the lattice 

- The initial analysis information

Recap
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Great formal model for reasoning
- Fairly simple
- Makes intuitive sense
- Has nice mathematical properties

But how to execute?

Executing Monotone Frameworks
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Using Lattices
for node in nodes:

  node.value = bottom

start_node.value = initial_value

walk(start_node)


function walk(node) =

  for next in node.successors:

    next.value =

      next.value ⨆ node.transfer(node.value)

    walk(next)

- Fine for straight-line programs 
- Distributes information along splits in control-flow 
- Combines values from one path with those of another 
- Recursive: great for stack overflows on loops
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Worklist: Iterative instead of Recursive
for node in nodes:

  node.value = bottom
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worklist = nodes


while !worklist.empty():

  node = worklist.pop()
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- Fine for straight-line programs
- Distributes information along splits in control-flow
- Combines values from one path with those of another
- Worklist: works for loops too

If initial_value == bottom and a 
transfer function is identity: 

 traversal will stop there, so don’t 
just start from the start_node
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Filter irrelevant CFG nodes
- With transfer function tf(x) = x

Order nodes
- Topological order would make sense
- But there are cycles in our graphs
- Every cycle should be computed to a fixpoint
‣ Really we need each strongly connected component (SCC)

- Tarjan’s SCCs algorithm gives SCCs in reverse topological order!
- Within each SCC the order should also not be random:
‣ We use the reverse post-order of the spanning tree

Worklist Algorithm Optimizations



Tarjan’s SCC algorithm



Strongly Connected Component (SCC) identification

Tarjan’s SCC algorithm



Strongly Connected Component (SCC) identification
- Label nodes with a increasing integers during a depth-first searches

Tarjan’s SCC algorithm



Strongly Connected Component (SCC) identification
- Label nodes with a increasing integers during a depth-first searches
‣ Multiple searches to make sure you reach all nodes in the graph

Tarjan’s SCC algorithm



Strongly Connected Component (SCC) identification
- Label nodes with a increasing integers during a depth-first searches
‣ Multiple searches to make sure you reach all nodes in the graph

- The depth-first spanning forest (spanning trees from the searches) 
holds SCCs as subtrees

Tarjan’s SCC algorithm



Strongly Connected Component (SCC) identification
- Label nodes with a increasing integers during a depth-first searches
‣ Multiple searches to make sure you reach all nodes in the graph

- The depth-first spanning forest (spanning trees from the searches) 
holds SCCs as subtrees

- Nodes that can reach the same lowest label are an SCC together

Tarjan’s SCC algorithm



Strongly Connected Component (SCC) identification
- Label nodes with a increasing integers during a depth-first searches
‣ Multiple searches to make sure you reach all nodes in the graph

- The depth-first spanning forest (spanning trees from the searches) 
holds SCCs as subtrees

- Nodes that can reach the same lowest label are an SCC together

The version in FlowSpec is slightly adapted

Tarjan’s SCC algorithm



Strongly Connected Component (SCC) identification
- Label nodes with a increasing integers during a depth-first searches
‣ Multiple searches to make sure you reach all nodes in the graph

- The depth-first spanning forest (spanning trees from the searches) 
holds SCCs as subtrees

- Nodes that can reach the same lowest label are an SCC together

The version in FlowSpec is slightly adapted
- To return the topological order instead of the reverse topo order

Tarjan’s SCC algorithm



Strongly Connected Component (SCC) identification
- Label nodes with a increasing integers during a depth-first searches
‣ Multiple searches to make sure you reach all nodes in the graph

- The depth-first spanning forest (spanning trees from the searches) 
holds SCCs as subtrees

- Nodes that can reach the same lowest label are an SCC together

The version in FlowSpec is slightly adapted
- To return the topological order instead of the reverse topo order
- To have reverse postorder inside SCCs

Tarjan’s SCC algorithm
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- Lattices are the generalisation

Monotone Frameworks
- Finite height lattices + monotone transfer functions = termination
- Execute by worklist algorithm

FlowSpec design
- FlowSpec only does intra-procedural, flow-sensitive analysis
- Worklist algorithm with optimisations:
‣ SCCs, reverse post-order within SCC, CFG filtering

Summary
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