
Constraint Semantics and Constraint Resolution

CS4200 | Compiler Construction | October 1, 2020

Hendrik van Antwerpen

Eelco Visser

This lecture

Source
Code
Editor

Abstract
Syntax
Tree

Solution/
Errors

Type
Specification

SolveParse +

- Type checking with type specifications

- Semantics of a type specification

- Type checking algorithms

- Constraint solving for type specifications

- Term equality and unification

Reading Material

The following papers add background, conceptual exposition, and examples to the material from
the slides. Some notation and technical details have been changed; check the documentation.

4

This paper describes the next generation of the approach.

Addresses (previously) open issues in expressiveness of scope graphs for
type systems:

- Structural types

- Generic types

Addresses open issue with staging of information in type systems.

Introduces Statix DSL for definition of type systems.

OOPSLA 2018

https://doi.org/10.1145/3276484

https://doi.org/10.1145/3276484
https://doi.org/10.1145/3276484

5

Good introduction to unification, which is the basis of many
type inference approaches, constraint languages, and logic
programming languages. Read sections 1, and 2.

https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf

Baader et al. “Chapter 8 - Unification Theory.” In Handbook of
Automated Reasoning, 445–533. Amsterdam: North-Holland, 2001.

https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf
https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf

Type Checking
with Specifications

Source
Code
Editor

Abstract
Syntax
Tree

Solution/
Errors

Type
Specification

Solve

language specific language
independent

Parse +

7

What are typing rules?
- Predicates that specify constraints (rule premises) on their arguments (the program)

- Syntax-directed, match on program constructs (at least in Statix)

- Specification of what it means to be well-typed!

What are the premises?
- Logical assertions that should hold for well-typed programs

- Specification language determines what assertions can be made

‣ Type equality and inequality, name resolution, ...

- Determines the expressiveness of the specification!

Solving
- Given an initial predicate that must hold, ...

- find an assignment for all logical variables, such that the predicate is satisfied

8

Typing Rules

Challenges for type checker implementations?
- Collecting (non-lexical) binding information before use

- Dealing with unknown (type) values

Separation of what from how
- Typing rules says what is a well-typed program

- Solver says how to determine that a program is well-typed

Separation of computation from program structure
- Typing rules follow the structure of the program

- Solver is flexible in order of resolution

Approach: reusable solver for the specification language
- Support logical variables for unknowns and infer their values

- Automatically determine correct resolution order

9

Typing Checking

Constraint Semantics

What is the meaning of constraints?
- What is a valid solution?

- Or: in which models are the constraints satisfied?

- Can we describe this independent of an algorithm to find a solution?

When are constraints satisfied?
- Formally described by the declarative semantics

- Written as G,ɸ ⊨ C

- Satisfied in a model

‣ Substitution ɸ (read: phi)

‣ Scope graph G

- Describes for every type of constraint when it is satisfied
11

What gives constraints meaning?

ty == FUN(ty1,ty2)  
Var{x} in s |-> d
ty1 == INT()

Semantics of (a Subset of) Statix Constraints

C = t == t // equality
 | r in s |-> d // name resolution (short for query var … in s |-> [d])
 | C /\ C // conjunction

G,ɸ ⊨ t == u

G,ɸ ⊨ r in s |-> d

G,ɸ ⊨ C1 /\ C2

if ɸ(t) = ɸ(u)

if ɸ(r) = x
and ɸ(d) = x
and ɸ(s) = #i
and x resolves to x from #i in G

if G,ɸ ⊨ C1 and G,ɸ ⊨ C2

Syntax

Declarative semantics

Using the Semantics

G,ɸ ⊨ t == u

 if ɸ(t) = ɸ(u)

G,ɸ ⊨ r in s |-> d

 if ɸ(r) = x

 and ɸ(d) = x

 and ɸ(s) = #i

 and x resolves to x from #i in G

G,ɸ ⊨ C1 /\ C2

 if G,ɸ ⊨ C1

 and G,ɸ ⊨ C2

let
 function f1(i2 : int) : int =
 i3 + 1
in
 f4(14)
end

ty1 == INT()
INT() == INT()
"i" in #s1 |-> d1
ty2 == INT()
"f" in #s0 |-> d2
ty3 == FUN(ty4,ty5)
ty4 == INT()
…

ɸ = { ty1 -> INT(),
 ty2 -> INT(),
 ty3 -> FUN(INT(),ty5),
 ty4 -> INT(),
 d1 -> "i",
 d2 -> "f"
 }

s0

s1

f1 : FUN(ty1,ty2)

i2i3

f4

Program Program constraints Unifier ɸ (model)

Scope graph G (model)Constraint semantics

Different Kinds of Variables

G,ɸ ⊨ t == u

 if ɸ(t) = ɸ(u)

G,ɸ ⊨ r in s |-> d

 if ɸ(r) = x

 and ɸ(d) = x

 and ɸ(s) = #i

 and x resolves to x from #i in G

G,ɸ ⊨ C1 /\ C2

 if G,ɸ ⊨ C1

 and G,ɸ ⊨ C2

let
 function f1(i2 : int) : int =
 i3 + 1
in
 f4(14)
end

ty1 == INT()
INT() == INT()
"i" in #s1 |-> d1
ty2 == INT()
"f" in #s0 |-> d2
ty3 == FUN(ty4,ty5)
ty4 == INT()
…

ɸ = { ty1 -> INT(),
 ty2 -> INT(),
 ty3 -> FUN(INT(),ty5),
 ty4 -> INT(),
 d1 -> "i",
 d2 -> "f"
 }

Program Program constraints Unifier ɸ (model)

Constraint semantics

s0

s1

f1 : FUN(ty1,ty2)

i2i3

f4

Scope graph G (model)

Different Kinds of Variables

G,ɸ ⊨ t == u

 if ɸ(t) = ɸ(u)

G,ɸ ⊨ r in s |-> d

 if ɸ(r) = x

 and ɸ(d) = x

 and ɸ(s) = #i

 and x resolves to x from #i in G

G,ɸ ⊨ C1 /\ C2

 if G,ɸ ⊨ C1

 and G,ɸ ⊨ C2

let
 function f1(i2 : int) : int =
 i3 + 1
in
 f4(14)
end

ty1 == INT()
INT() == INT()
"i" in #s1 |-> d1
ty2 == INT()
"f" in #s0 |-> d2
ty3 == FUN(ty4,ty5)
ty4 == INT()
…

ɸ = { ty1 -> INT(),
 ty2 -> INT(),
 ty3 -> FUN(INT(),ty5),
 ty4 -> INT(),
 d1 -> "i",
 d2 -> "f"
 }

Program Program constraints Unifier ɸ (model)

Constraint semantics

s0

s1

f1 : FUN(ty1,ty2)

i2i3

f4

Scope graph G (model)Object language
variables

Different Kinds of Variables

G,ɸ ⊨ t == u

 if ɸ(t) = ɸ(u)

G,ɸ ⊨ r in s |-> d

 if ɸ(r) = x

 and ɸ(d) = x

 and ɸ(s) = #i

 and x resolves to x from #i in G

G,ɸ ⊨ C1 /\ C2

 if G,ɸ ⊨ C1

 and G,ɸ ⊨ C2

let
 function f1(i2 : int) : int =
 i3 + 1
in
 f4(14)
end

ty1 == INT()
INT() == INT()
"i" in #s1 |-> d1
ty2 == INT()
"f" in #s0 |-> d2
ty3 == FUN(ty4,ty5)
ty4 == INT()
…

ɸ = { ty1 -> INT(),
 ty2 -> INT(),
 ty3 -> FUN(INT(),ty5),
 ty4 -> INT(),
 d1 -> "i",
 d2 -> "f"
 }

Program Program constraints Unifier ɸ (model)

Constraint semantics

s0

s1

f1 : FUN(ty1,ty2)

i2i3

f4

Scope graph G (model)Constraint / logic
variables

Different Kinds of Variables

G,ɸ ⊨ t == u

 if ɸ(t) = ɸ(u)

G,ɸ ⊨ r in s |-> d

 if ɸ(r) = x

 and ɸ(d) = x

 and ɸ(s) = #i

 and x resolves to x from #i in G

G,ɸ ⊨ C1 /\ C2

 if G,ɸ ⊨ C1

 and G,ɸ ⊨ C2

let
 function f1(i2 : int) : int =
 i3 + 1
in
 f4(14)
end

ty1 == INT()
INT() == INT()
"i" in #s1 |-> d1
ty2 == INT()
"f" in #s0 |-> d2
ty3 == FUN(ty4,ty5)
ty4 == INT()
…

ɸ = { ty1 -> INT(),
 ty2 -> INT(),
 ty3 -> FUN(INT(),ty5),
 ty4 -> INT(),
 d1 -> "i",
 d2 -> "f"
 }

Program Program constraints Unifier ɸ (model)

Constraint semantics

s0

s1

f1 : FUN(ty1,ty2)

i2i3

f4

Scope graph G (model)Semantics

meta-variables

Type Checking

What should a type checker do?
- Check that a program is well-typed!

- Resolve names, and check or compute types

- Report useful error messages

- Provide a representation of name and type information

‣ Type annotated AST

This information is used for
- Next compiler steps (optimization, code generation, …)

- IDE (error reporting, code completion, refactoring, …)

- Other tools (API documentation, …)

How are type checkers implemented?
19

How to check types?

Computing Type of Expression (recap)

- Can be executed top down, in premise order
- Could be written almost like this in a functional language

function (a : int) = a + 1

Fun("a", INT(),
 Plus(Var("a"), Int(1)))

FUN(INT(), INT())

typeOfExp(s, Int(_)) = INT().

typeOfExp(s, Plus(e1, e2)) = INT() :-
 typeOfExp(s, e1) == INT(),
 typeOfExp(s, e2) == INT().

typeOfExp(s, Fun(x, te, e)) = FUN(S, T) :- {s_fun}
 typeOfTypeExp(s, te) == S,
 new s_fun, s_fun -P-> s,
 s_fun -> Var{x} with typeOfDecl S,
 typeOfExp(s_fun, e) == T.

typeOfExp(s, Var(x)) = T :-
 typeOfDecl of Var{x} in s |-> [(_, (_, T))].

Inferring the Type of a Parameter

- What are the consequences for our typing rules?
- Types are not known from the start, but learned gradually
- A simple top-down traversal is insufficient

typeOfExp(s, Int(_)) = INT().

typeOfExp(s, Plus(e1, e2)) = INT() :-
 typeOfExp(s, e1) == INT(),
 typeOfExp(s, e2) == INT().

typeOfExp(s, Fun(x, te, e)) = FUN(S, T) :- {s_fun}
 typeOfTypeExp(s, te) == S,
 new s_fun, s_fun -P-> s,
 s_fun -> Var{x} with typeOfDecl S,
 typeOfExp(s_fun, e) == T.

typeOfExp(s, Var(x)) = T :-
 typeOfDecl of Var{x} in s |-> [(_, (_, T))].

function (a : int) = a + 1

Fun("a", INT(),
 Plus(Var("a"), Int(1)))

FUN(INT(), INT())

Unknown S!

Checking classes

How can we type check this program?
- Is there a possible single traversal strategy here?
- Why are the type annotations not enough?
- What strategy could be used?

Two-pass approach
- The first pass builds a class table
- The second pass checks expressions using the

class table

Question
- Does this still work if we introduce nested

classes?

class A {
 B m() {
 return new C();
 }
}

class B {
 int i;
}

class C extends B {
 int m(A a) {
 return a.m().i;
 }
}

Variables and Constraints

typeOfExp(s, Int(_)) = INT().

typeOfExp(s, Plus(e1, e2)) = INT() :-
 typeOfExp(s, e1) == INT(),
 typeOfExp(s, e2) == INT().

typeOfExp(s, Fun(x, te, e)) = FUN(S, T) :- {s_fun}
 typeOfTypeExp(s, te) == S,
 new s_fun, s_fun -P-> s,
 s_fun -> Var{x} with typeOfDecl S,
 typeOfExp(s_fun, e) == T.

typeOfExp(s, Var(x)) = T :-
 typeOfDecl of Var{x} in s |-> [(_, (_, T))].

function (a : int) = a + 1

Fun("a", INT(),
 Plus(Var("a"), Int(1)))

FUN(?S, INT()) ?S == INT()+

?S := INT()

What are challenges when implementing a type checker?
- Collecting necessary binding information before using it

- Gradually learning type information

What are the consequences of these challenges?
- The order of computation needs to be more flexible than the AST

traversal

- Support explicit logical variables during solving

24

How to check types?

Solving Constraints

Solving by Rewriting

C
{}; {}

Constraint
{}

{}
Solution

C'
G'; ɸ'

C''
G''; ɸ''

{}
G; ɸ...

Solving by Rewriting

<C; G, ɸ> ⟶ <C; G, ɸ>

 <t "== u, C; G, ɸ> ⟶ <C; G, ɸ'> where unify(ɸ,t,u) = ɸ'

 <s1 -L"-> s2, C; G, ɸ> ⟶ <C; G', ɸ> where ɸ(s1) = #i, ɸ(s2) = #j, 
 G + {#i -L"-> #j} = G'

<r in s ""|-> t, C; G, ɸ> ⟶ <t "== d; G, ɸ> where ɸ(r) = Ns{x}, ɸ(s) = #i,  
 resolve(G, #i, Ns{x}) = d

def solve(C):

 if <C; {}, {}> ⟶* <{}; G, ɸ">:

 return <G, ɸ>

 else:

 fail

Scope graph and
name resolution
algorithm don't have
to know about logical
variables

Non-deterministic
constraint selection

Solver = rewrite system
- Rewrite a constraints set + solution

- Simplifying and eliminating constraints

‣ Constraint selecting is non-deterministic

‣ Resolution order is controlled by side conditions on rewrite rules

- Rely on (other) solvers and algorithms for base cases

‣ Unification for term equality

‣ Scope graph resolution

- The solution is final if all constraints are eliminated

Does the order matter for the outcome?
- Confluence: the output is the same for any solving order

- Partly true for Statix

‣ Up to variable and scope names

‣ Only if all constraints are reduced

28

Solving by Rewriting

28

What is the difference?
- Algorithm computes a solution (= model)

- Semantics describes when a constraint is satisfied by a model

How are these related?
- Soundness

‣ If the solver returns <G, ɸ>, then G,ɸ ⊨ C

- Completeness:

‣ If a G and ɸ exists such that G,ɸ ⊨ C, then the solver returns it

‣ If no such G or ɸ exists, the solver fails

- Principality

‣ The solver finds the most general ɸ

29

Semantics vs Algorithm

Term Equality
& Unification

Syntactic Terms

INT()
FUN(INT(),INT()) f(t0,…,tn)

function symbol

arity

f(t0,…,tn) == g(u0,…,um) if
- f = g, and n = m
- ti == ui for every i

Generic Terms

Syntactic Equality

terms t, u
functions f, g, h

arguments

Variables and Substitution

f(g(),a)

terms t, u
functions f, g, h
variables a, b, c
substitution ɸ

ground term: a term without variables

ɸ = { a -> f(g(),b), b -> h() }

domain

f(g(),f(g(),b))

ɸ(a) = t if { a -> t } in ɸ
ɸ(a) = a otherwise
ɸ(f(t0,…,tn)) = f(ɸ(t0),…,ɸ(tn))

variable substitution

Unifiers

f(a,g()) == f(h(),b) a -> h()
b -> g()

g(a,f(b)) == g(f(h()),a) a -> f(h())
b -> h()

f(a,h()) == g(h(),b) no unifier, f != g

terms t, u
functions f, g, h
variables a, b, c
substitution ɸ

f(h(),g()) == f(h(),g())

g(f(h()),f(h())) == g(f(h()),f(h()))

f(b,b) == b b -> f(b,b) not idempotent

unifier: a substitution that makes terms equal

Most General Unifiers terms t, u
functions f, g, h
variables a, b, c
substitution ɸ

f(a,b) == f(b,c)

a -> g()
b -> g()
c -> g()

a -> b
c -> b

f(g(),g()) == f(g(),g())

f(b,b) == f(b,b)

b -> a
c -> a f(a,a) == f(a,a)most general

unifiers

Most General Unifiers

a -> g()
b -> g()
c -> g()

a -> b
b -> b
c -> b

a -> a
b -> a
c -> a

a -> b
b -> b
c -> b

terms t, u
functions f, g, h
variables a, b, c
substitution ɸ

b -> g()

b -> aa -> b
b -> b
c -> b

a -> a
b -> a
c -> a

a -> b

every unifier is an instance of a most general unifier

(implicit) identity case

most general unifiers are related by renaming substitutions

Unification
global ɸ
def unify(t, u):
 if t is a variable:
 t := ɸ(t)
 if u is a variable:
 u := ɸ(u)
 if t is a variable and t == u:
 pass
 else if t == f(t1,...,tn) and u == g(u1,...,um):
 if f == g and n == m:
 for i := 1 to n:
 unify(ti, ui)
 else:
 fail "different function symbols"
 else if t is not a variable:
 unify(u, t)
 else if t occurs in u:
 fail "recursive term"
 else:
 ɸ += { t -> u }

terms t, u
functions f, g, h
variables a, b, c
substitution ɸt == a 

instantiate variable

t == f(t1,...,t5), u == f(u1,…,u5) 
matching terms

t == f(t0,...,t5), u == g(u0,...,u3) 
mismatching terms
t == f(t0,...,t5), u == b 
swap terms
t == a, u == k(g(a,f())) 
recursive terms
t == a, u == k(u0,...,u5) 
extend unifier

u == b 
instantiate variable
b == b 
equal variables

Soundness
- If the algorithm returns a unifier, it makes the terms equal

Completeness
- If a unifier exists, the algorithm will return it

Principality
- If the algorithm returns a unifier, it is a most general unifier

Termination
- The algorithm always returns a unifier or fails

37

Properties of Unification

Efficient Unification
with Union-Find

Complexity of Unification

Space complexity
- Exponential
- Representation of unifier

Time complexity
- Exponential
- Recursive calls on terms

Solution
- Union-Find algorithm
- Complexity growth can be

considered constant 

h(a1 , …,an , f(b0,b0), …, f(bn-1,bn-1), an) ==
h(f(a0,a0), …,f(an-1,an-1), b1, …, bn-1 , bn)

a1 -> f(a0,a0)
a2 -> f(f(a0,a0), f(a0,a0))
ai -> … 2i+1-1 subterms …
b1 -> f(a0,a0)
b2 -> f(f(a0,a0), f(a0,a0))
bi -> … 2i+1-1 subterms …

terms t, u
functions f, g, h
variables a, b, c
substitution ɸ

a1 -> f(a0,a0)
a2 -> f(a1,a1)
ai -> … 3 subterms …
b1 -> f(a0,a0)
b2 -> f(a1,a1)
bi -> … 3 subterms …

fully applied triangular

Set Representatives

FIND(a):  
 b := rep(a)  
 if b == a:  
 return a  
 else  
 return FIND(b)  
 
 

UNION(a1,a2):  
 b1 := FIND(a1)  
 b2 := FIND(a2)  
 LINK(b1,b2)  

LINK(a1,a2):  
 rep(a1) := a2  
 
 
 
 

a == b  
c == a
u == w  
v == u  
x == v
x == c

a

b c

u

w v

x

representative

FIND(a):
 b := rep(a)
 if b == a:
 return a
 else
 b := FIND(b)
 rep(a) := b
 return b

UNION(a1,a2):  
 b1 := FIND(a1)
 b2 := FIND(a2)
 LINK(b1,b2)  

LINK(a1,a2):  
 rep(a1) := a2

FIND(a):  
 b := rep(a)  
 if b == a:  
 return a  
 else  
 return FIND(b)  
 
 

UNION(a1,a2):  
 b1 := FIND(a1)  
 b2 := FIND(a2)  
 LINK(b1,b2)  

LINK(a1,a2):  
 rep(a1) := a2  
 
 
 
 

Path Compression

…
x == b
x == c
x == w
x == v

a

b c

u

w v

x

Tree Balancing

FIND(a):
 b := rep(a)
 if b == a:
 return a
 else
 b := FIND(b)
 rep(a) := b
 return b

UNION(a1,a2):
 b1 := FIND(a1)
 b2 := FIND(a2)
 LINK(b1,b2)  

LINK(a1,a2):  
 if size(a2) > size(a1):
 rep(a1) := a2
 size(a2) += size(a1)
 else:
 rep(a2) := a1
 size(a1) += size(a2)

…
x == c

a

b c

u

w v

x
1

21

4

11

3

3 steps

2 steps

?

FIND(a):
 b := rep(a)
 if b == a:
 return a
 else
 b := FIND(b)
 rep(a) := b
 return b

UNION(a1,a2):  
 b1 := FIND(a1)
 b2 := FIND(a2)
 LINK(b1,b2)  

LINK(a1,a2):  
 rep(a1) := a2

The Complex Case

h(a1 , …,an , f(b0,b0), …, f(bn-1,bn-1), an) ==
h(f(a0,a0), …,f(an-1,an-1), b1, …, bn-1 , bn)

a1

a0

an-1

an

b1

b0

bn-1

bn

f(a0,a0)

f(an-2,an-2)

f(an-1,an-1)

f(b0,b0)

f(bn-2,bn-2)

f(bn-1,bn-1)

an == bn
f(an-1,an-1) == f(bn-1,bn-1)

an-1 == bn-1 an-1 == bn-1
f(an-2,an-2) == f(bn-2,bn-2)

⠸

a1 == b1 a1 == b1
f(a0,a0) == f(b0,b0)

a0 == b0 a0 == b0

How about occurrence checks? Postpone!

Main idea
- Represent unifier as graph

- One variable represent equivalence class

- Replace substitution by union & find operations

- Testing equality becomes testing node identity

Optimizations
- Path compression make recurring lookups fast

- Tree balancing keeps paths short

Complexity
- Linear in space and almost linear (inverse Ackermann) in time

- Easy to extract triangular unifier from graph

- Postpone occurrence checks to prevent traversing (potentially) large terms

44

Union-Find
Martelli, Montanari. An Efficient
Unification Algorithm. TOPLAS, 1982

Conclusion

What is the meaning of constraints?
- Formally described by constraint semantics

- Semantics classifies solutions, but do not compute them

- Semantics is expressed in terms of other theories

‣ Syntactic equality

‣ Scope graph resolution

What techniques can we use to implement solvers?
- Constraint simplification

‣ Simplification rules

‣ Depends on built-in procedures to unify or resolve names

- Unification

‣ Unifiers make terms with variables equal

‣ Unification computes most general unifiers

What is the relation between solver and semantics?
- Soundness: any solution satisfies the semantics

- Completeness: if a solution exists, the solver finds it

- Principality: the solver computes most general solutions

46

Summary

46

Except where otherwise noted, this work is licensed under

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

