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- Type checking algorithms

- Constraint solving for type specifications

- Term equality and unification



Reading Material

The following papers add background, conceptual exposition, and examples to the material from 
the slides. Some notation and technical details have been changed; check the documentation.
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This paper describes the next generation of the approach.


Addresses (previously) open issues in expressiveness of scope graphs for 
type systems:

- Structural types

- Generic types


Addresses open issue with staging of information in type systems.


Introduces Statix DSL for definition of type systems.

OOPSLA 2018

https://doi.org/10.1145/3276484

https://doi.org/10.1145/3276484
https://doi.org/10.1145/3276484
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Good introduction to unification, which is the basis of many 
type inference approaches, constraint languages, and logic 
programming languages. Read sections 1, and 2.

https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf

Baader et al. “Chapter 8 - Unification Theory.” In Handbook of 
Automated Reasoning, 445–533. Amsterdam: North-Holland, 2001.

https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf
https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf
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What are typing rules? 
- Predicates that specify constraints (rule premises) on their arguments (the program)

- Syntax-directed, match on program constructs (at least in Statix)

- Specification of what it means to be well-typed!


What are the premises? 
- Logical assertions that should hold for well-typed programs

- Specification language determines what assertions can be made

‣ Type equality and inequality, name resolution, ...


- Determines the expressiveness of the specification!


Solving 
- Given an initial predicate that must hold, ...

- find an assignment for all logical variables, such that the predicate is satisfied

8

Typing Rules



Challenges for type checker implementations? 
- Collecting (non-lexical) binding information before use

- Dealing with unknown (type) values


Separation of what from how 
- Typing rules says what is a well-typed program

- Solver says how to determine that a program is well-typed


Separation of computation from program structure 
- Typing rules follow the structure of the program

- Solver is flexible in order of resolution


Approach: reusable solver for the specification language 
- Support logical variables for unknowns and infer their values

- Automatically determine correct resolution order

9

Typing Checking



Constraint Semantics



What is the meaning of constraints? 
- What is a valid solution?

- Or: in which models are the constraints satisfied?

- Can we describe this independent of an algorithm to find a solution?


When are constraints satisfied? 
- Formally described by the declarative semantics

- Written as G,ɸ ⊨ C 

- Satisfied in a model

‣ Substitution ɸ (read: phi)

‣ Scope graph G


- Describes for every type of constraint when it is satisfied
11

What gives constraints meaning?

ty == FUN(ty1,ty2)  
Var{x} in s |-> d
ty1 == INT()



Semantics of (a Subset of) Statix Constraints

C = t == t           // equality
  | r in s |-> d     // name resolution (short for query var … in s |-> [d])
  | C /\ C           // conjunction

G,ɸ ⊨ t == u

G,ɸ ⊨ r in s |-> d

G,ɸ ⊨ C1 /\ C2

if ɸ(t) = ɸ(u)

if  ɸ(r) = x
and ɸ(d) = x
and ɸ(s) = #i
and x resolves to x from #i in G

if G,ɸ ⊨ C1 and G,ɸ ⊨ C2

Syntax

Declarative semantics



Using the Semantics

G,ɸ ⊨ t == u 

    if ɸ(t) = ɸ(u) 

G,ɸ ⊨ r in s |-> d 

    if  ɸ(r) = x 

    and ɸ(d) = x 

    and ɸ(s) = #i 

    and x resolves to x from #i in G 

G,ɸ ⊨ C1 /\ C2 

    if  G,ɸ ⊨ C1 

    and G,ɸ ⊨ C2

let
  function f1(i2 : int) : int =
    i3 + 1
in
  f4(14)
end

ty1 == INT()
INT() == INT()
"i" in #s1 |-> d1
ty2 == INT()
"f" in #s0 |-> d2
ty3 == FUN(ty4,ty5)
ty4 == INT()
…

ɸ = { ty1 -> INT(),
      ty2 -> INT(),
      ty3 -> FUN(INT(),ty5),
      ty4 -> INT(),
      d1  -> "i",
      d2  -> "f"
    }

s0

s1

f1 : FUN(ty1,ty2)

i2i3

f4

Program Program constraints Unifier ɸ (model)

Scope graph G (model)Constraint semantics



Different Kinds of Variables

G,ɸ ⊨ t == u 

    if ɸ(t) = ɸ(u) 

G,ɸ ⊨ r in s |-> d 

    if  ɸ(r) = x 

    and ɸ(d) = x 

    and ɸ(s) = #i 

    and x resolves to x from #i in G 

G,ɸ ⊨ C1 /\ C2 

    if  G,ɸ ⊨ C1 

    and G,ɸ ⊨ C2

let
  function f1(i2 : int) : int =
    i3 + 1
in
  f4(14)
end

ty1 == INT()
INT() == INT()
"i" in #s1 |-> d1
ty2 == INT()
"f" in #s0 |-> d2
ty3 == FUN(ty4,ty5)
ty4 == INT()
…

ɸ = { ty1 -> INT(),
      ty2 -> INT(),
      ty3 -> FUN(INT(),ty5),
      ty4 -> INT(),
      d1  -> "i",
      d2  -> "f"
    }

Program Program constraints Unifier ɸ (model)

Constraint semantics

s0

s1

f1 : FUN(ty1,ty2)

i2i3

f4

Scope graph G (model)



Different Kinds of Variables

G,ɸ ⊨ t == u 

    if ɸ(t) = ɸ(u) 

G,ɸ ⊨ r in s |-> d 

    if  ɸ(r) = x 

    and ɸ(d) = x 

    and ɸ(s) = #i 

    and x resolves to x from #i in G 

G,ɸ ⊨ C1 /\ C2 

    if  G,ɸ ⊨ C1 

    and G,ɸ ⊨ C2

let
  function f1(i2 : int) : int =
    i3 + 1
in
  f4(14)
end

ty1 == INT()
INT() == INT()
"i" in #s1 |-> d1
ty2 == INT()
"f" in #s0 |-> d2
ty3 == FUN(ty4,ty5)
ty4 == INT()
…

ɸ = { ty1 -> INT(),
      ty2 -> INT(),
      ty3 -> FUN(INT(),ty5),
      ty4 -> INT(),
      d1  -> "i",
      d2  -> "f"
    }

Program Program constraints Unifier ɸ (model)

Constraint semantics

s0

s1

f1 : FUN(ty1,ty2)

i2i3

f4

Scope graph G (model)Object language 
variables



Different Kinds of Variables

G,ɸ ⊨ t == u 

    if ɸ(t) = ɸ(u) 

G,ɸ ⊨ r in s |-> d 

    if  ɸ(r) = x 

    and ɸ(d) = x 

    and ɸ(s) = #i 

    and x resolves to x from #i in G 

G,ɸ ⊨ C1 /\ C2 

    if  G,ɸ ⊨ C1 

    and G,ɸ ⊨ C2

let
  function f1(i2 : int) : int =
    i3 + 1
in
  f4(14)
end

ty1 == INT()
INT() == INT()
"i" in #s1 |-> d1
ty2 == INT()
"f" in #s0 |-> d2
ty3 == FUN(ty4,ty5)
ty4 == INT()
…

ɸ = { ty1 -> INT(),
      ty2 -> INT(),
      ty3 -> FUN(INT(),ty5),
      ty4 -> INT(),
      d1  -> "i",
      d2  -> "f"
    }

Program Program constraints Unifier ɸ (model)

Constraint semantics

s0

s1

f1 : FUN(ty1,ty2)

i2i3

f4

Scope graph G (model)Constraint / logic 
variables



Different Kinds of Variables

G,ɸ ⊨ t == u 

    if ɸ(t) = ɸ(u) 

G,ɸ ⊨ r in s |-> d 

    if  ɸ(r) = x 

    and ɸ(d) = x 

    and ɸ(s) = #i 

    and x resolves to x from #i in G 

G,ɸ ⊨ C1 /\ C2 

    if  G,ɸ ⊨ C1 

    and G,ɸ ⊨ C2

let
  function f1(i2 : int) : int =
    i3 + 1
in
  f4(14)
end

ty1 == INT()
INT() == INT()
"i" in #s1 |-> d1
ty2 == INT()
"f" in #s0 |-> d2
ty3 == FUN(ty4,ty5)
ty4 == INT()
…

ɸ = { ty1 -> INT(),
      ty2 -> INT(),
      ty3 -> FUN(INT(),ty5),
      ty4 -> INT(),
      d1  -> "i",
      d2  -> "f"
    }

Program Program constraints Unifier ɸ (model)

Constraint semantics

s0

s1

f1 : FUN(ty1,ty2)

i2i3

f4

Scope graph G (model)Semantics

meta-variables



Type Checking



What should a type checker do? 
- Check that a program is well-typed!

- Resolve names, and check or compute types

- Report useful error messages

- Provide a representation of name and type information

‣ Type annotated AST


This information is used for 
- Next compiler steps (optimization, code generation, …)

- IDE (error reporting, code completion, refactoring, …)

- Other tools (API documentation, …)


How are type checkers implemented?
19

How to check types?



Computing Type of Expression (recap)

- Can be executed top down, in premise order 
- Could be written almost like this in a functional language

function (a : int) = a + 1

Fun("a", INT(),
    Plus(Var("a"), Int(1)))

FUN(INT(), INT())

typeOfExp(s, Int(_)) = INT().

typeOfExp(s, Plus(e1, e2)) = INT() :-
  typeOfExp(s, e1) == INT(),
  typeOfExp(s, e2) == INT().

typeOfExp(s, Fun(x, te, e)) = FUN(S, T) :- {s_fun}
  typeOfTypeExp(s, te) == S,
  new s_fun, s_fun -P-> s,
  s_fun -> Var{x} with typeOfDecl S,
  typeOfExp(s_fun, e) == T.

typeOfExp(s, Var(x)) = T :-
  typeOfDecl of Var{x} in s |-> [(_, (_, T))].



Inferring the Type of a Parameter

- What are the consequences for our typing rules? 
- Types are not known from the start, but learned gradually 
- A simple top-down traversal is insufficient

typeOfExp(s, Int(_)) = INT().

typeOfExp(s, Plus(e1, e2)) = INT() :-
  typeOfExp(s, e1) == INT(),
  typeOfExp(s, e2) == INT().

typeOfExp(s, Fun(x, te, e)) = FUN(S, T) :- {s_fun}
  typeOfTypeExp(s, te) == S,
  new s_fun, s_fun -P-> s,
  s_fun -> Var{x} with typeOfDecl S,
  typeOfExp(s_fun, e) == T.

typeOfExp(s, Var(x)) = T :-
  typeOfDecl of Var{x} in s |-> [(_, (_, T))].

function (a : int) = a + 1

Fun("a", INT(),
    Plus(Var("a"), Int(1)))

FUN(INT(), INT())

Unknown S!



Checking classes

How can we type check this program? 
- Is there a possible single traversal strategy here? 
- Why are the type annotations not enough? 
- What strategy could be used? 

Two-pass approach 
- The first pass builds a class table 
- The second pass checks expressions using the 

class table 

Question 
- Does this still work if we introduce nested 

classes?

class A { 
    B m() { 
        return new C(); 
    } 
} 

class B { 
    int i; 
} 

class C extends B { 
   int m(A a) { 
        return a.m().i; 
    } 
}



Variables and Constraints

typeOfExp(s, Int(_)) = INT().

typeOfExp(s, Plus(e1, e2)) = INT() :-
  typeOfExp(s, e1) == INT(),
  typeOfExp(s, e2) == INT().

typeOfExp(s, Fun(x, te, e)) = FUN(S, T) :- {s_fun}
  typeOfTypeExp(s, te) == S,
  new s_fun, s_fun -P-> s,
  s_fun -> Var{x} with typeOfDecl S,
  typeOfExp(s_fun, e) == T.

typeOfExp(s, Var(x)) = T :-
  typeOfDecl of Var{x} in s |-> [(_, (_, T))].

function (a : int) = a + 1

Fun("a", INT(),
    Plus(Var("a"), Int(1)))

FUN(?S, INT()) ?S == INT()+

?S := INT()



What are challenges when implementing a type checker? 
- Collecting necessary binding information before using it

- Gradually learning type information


What are the consequences of these challenges? 
- The order of computation needs to be more flexible than the AST 

traversal

- Support explicit logical variables during solving

24

How to check types?



Solving Constraints



Solving by Rewriting

C 
{}; {}

Constraint 
{}

{} 
Solution

C' 
G'; ɸ'

C'' 
G''; ɸ''

{} 
G; ɸ...



Solving by Rewriting

<C; G, ɸ> ⟶ <C; G, ɸ>

          <t "== u, C; G, ɸ> ⟶ <C; G, ɸ'> where unify(ɸ,t,u) = ɸ'


      <s1 -L"-> s2, C; G, ɸ> ⟶ <C; G', ɸ> where ɸ(s1) = #i, ɸ(s2) = #j, 
                                                 G + {#i -L"-> #j} = G'


<r in s ""|-> t, C; G, ɸ> ⟶ <t "== d; G, ɸ> where ɸ(r) = Ns{x}, ɸ(s) = #i,  
                                                 resolve(G, #i, Ns{x}) = d

def solve(C):

  if <C; {}, {}> ⟶* <{}; G, ɸ">:

    return <G, ɸ>

  else:

    fail

Scope graph and 
name resolution 
algorithm don't have 
to know about logical 
variables 

Non-deterministic 
constraint selection



Solver = rewrite system 
- Rewrite a constraints set + solution

- Simplifying and eliminating constraints

‣ Constraint selecting is non-deterministic

‣ Resolution order is controlled by side conditions on rewrite rules


- Rely on (other) solvers and algorithms for base cases

‣ Unification for term equality

‣ Scope graph resolution


- The solution is final if all constraints are eliminated


Does the order matter for the outcome? 
- Confluence: the output is the same for any solving order

- Partly true for Statix

‣ Up to variable and scope names

‣ Only if all constraints are reduced

28

Solving by Rewriting

28



What is the difference? 
- Algorithm computes a solution (= model)

- Semantics describes when a constraint is satisfied by a model


How are these related? 
- Soundness

‣ If the solver returns <G, ɸ>, then G,ɸ ⊨ C


- Completeness:

‣ If a G and ɸ exists such that G,ɸ ⊨ C, then the solver returns it

‣ If no such G or ɸ exists, the solver fails


- Principality

‣ The solver finds the most general ɸ

29

Semantics vs Algorithm



Term Equality 
& Unification



Syntactic Terms

INT()
FUN(INT(),INT()) f(t0,…,tn)

function symbol

arity

f(t0,…,tn) == g(u0,…,um) if
- f = g, and n = m
- ti == ui for every i

Generic Terms

Syntactic Equality

terms      t, u
functions  f, g, h

arguments



Variables and Substitution

f(g(),a)

terms        t, u
functions    f, g, h
variables    a, b, c
substitution ɸ

ground term: a term without variables

ɸ = { a -> f(g(),b), b -> h() }

domain

f(g(),f(g(),b))

ɸ(a)         = t                  if { a -> t } in ɸ
ɸ(a)         = a                  otherwise
ɸ(f(t0,…,tn)) = f(ɸ(t0),…,ɸ(tn))

variable substitution



Unifiers

f(a,g()) == f(h(),b) a -> h()
b -> g()

g(a,f(b)) == g(f(h()),a) a -> f(h())
b -> h()

f(a,h()) == g(h(),b) no unifier, f != g

terms        t, u
functions    f, g, h
variables    a, b, c
substitution ɸ

f(h(),g()) == f(h(),g())

g(f(h()),f(h())) == g(f(h()),f(h()))

f(b,b) == b b -> f(b,b) not idempotent

unifier: a substitution that makes terms equal



Most General Unifiers terms        t, u
functions    f, g, h
variables    a, b, c
substitution ɸ

f(a,b) == f(b,c)

a -> g()
b -> g()
c -> g()

a -> b
c -> b

f(g(),g()) == f(g(),g())

f(b,b) == f(b,b)

b -> a
c -> a f(a,a) == f(a,a)most general

unifiers



Most General Unifiers

a -> g()
b -> g()
c -> g()

a -> b
b -> b
c -> b

a -> a
b -> a
c -> a

a -> b
b -> b
c -> b

terms        t, u
functions    f, g, h
variables    a, b, c
substitution ɸ

b -> g()

b -> aa -> b
b -> b
c -> b

a -> a
b -> a
c -> a

a -> b

every unifier is an instance of a most general unifier

(implicit) identity case

most general unifiers are related by renaming substitutions



Unification
global ɸ 
def unify(t, u): 
  if t is a variable: 
    t := ɸ(t) 
  if u is a variable: 
    u := ɸ(u) 
  if t is a variable and t == u: 
    pass 
  else if t == f(t1,...,tn) and u == g(u1,...,um): 
    if f == g and n == m: 
      for i := 1 to n: 
        unify(ti, ui) 
    else: 
      fail "different function symbols" 
  else if t is not a variable: 
    unify(u, t) 
  else if t occurs in u: 
    fail "recursive term" 
  else: 
    ɸ += { t -> u }

terms        t, u
functions    f, g, h
variables    a, b, c
substitution ɸt == a 

instantiate variable

t == f(t1,...,t5), u == f(u1,…,u5) 
matching terms

t == f(t0,...,t5), u == g(u0,...,u3) 
mismatching terms
t == f(t0,...,t5), u == b 
swap terms
t == a, u == k(g(a,f())) 
recursive terms
t == a, u == k(u0,...,u5) 
extend unifier

u == b 
instantiate variable
b == b 
equal variables



Soundness 
- If the algorithm returns a unifier, it makes the terms equal


Completeness 
- If a unifier exists, the algorithm will return it


Principality 
- If the algorithm returns a unifier, it is a most general unifier


Termination 
- The algorithm always returns a unifier or fails

37

Properties of Unification



Efficient Unification
with Union-Find



Complexity of Unification

Space complexity 
- Exponential 
- Representation of  unifier 

Time complexity 
- Exponential 
- Recursive calls on terms 

Solution 
- Union-Find algorithm 
- Complexity growth can be 

considered constant 

h(a1        , …,an             , f(b0,b0), …, f(bn-1,bn-1), an) ==
h(f(a0,a0), …,f(an-1,an-1), b1,       …, bn-1          , bn)

a1 -> f(a0,a0)
a2 -> f(f(a0,a0), f(a0,a0))
ai -> … 2i+1-1 subterms …
b1 -> f(a0,a0)
b2 -> f(f(a0,a0), f(a0,a0))
bi -> … 2i+1-1 subterms …

terms        t, u
functions    f, g, h
variables    a, b, c
substitution ɸ

a1 -> f(a0,a0)
a2 -> f(a1,a1)
ai -> … 3 subterms …
b1 -> f(a0,a0)
b2 -> f(a1,a1)
bi -> … 3 subterms …

fully applied triangular



Set Representatives

FIND(a):  
  b := rep(a)  
  if b == a:  
     return a  
  else  
     return FIND(b)  
 
 

UNION(a1,a2):  
  b1 := FIND(a1)  
  b2 := FIND(a2)  
  LINK(b1,b2)  

LINK(a1,a2):  
  rep(a1) := a2  
 
 
 
 

a == b  
c == a
u == w  
v == u  
x == v
x == c

a

b c

u

w v

x

representative



FIND(a):
  b := rep(a)
  if b == a:
     return a
  else
     b := FIND(b)
     rep(a) := b
     return b

UNION(a1,a2):  
  b1 := FIND(a1)
  b2 := FIND(a2)
  LINK(b1,b2)  

LINK(a1,a2):  
  rep(a1) := a2

FIND(a):  
  b := rep(a)  
  if b == a:  
     return a  
  else  
     return FIND(b)  
 
 

UNION(a1,a2):  
  b1 := FIND(a1)  
  b2 := FIND(a2)  
  LINK(b1,b2)  

LINK(a1,a2):  
  rep(a1) := a2  
 
 
 
 

Path Compression

…
x == b
x == c
x == w
x == v

a

b c

u

w v

x



Tree Balancing

FIND(a):
  b := rep(a)
  if b == a:
     return a
  else
     b := FIND(b)
     rep(a) := b
     return b

UNION(a1,a2):
  b1 := FIND(a1)
  b2 := FIND(a2)
  LINK(b1,b2)  

LINK(a1,a2):  
  if size(a2) > size(a1):
     rep(a1) := a2
     size(a2) += size(a1)
  else:
     rep(a2) := a1
     size(a1) += size(a2)

…
x == c

a

b c

u

w v

x
1

21

4

11

3

3 steps

2 steps

?

FIND(a):
  b := rep(a)
  if b == a:
     return a
  else
     b := FIND(b)
     rep(a) := b
     return b

UNION(a1,a2):  
  b1 := FIND(a1)
  b2 := FIND(a2)
  LINK(b1,b2)  

LINK(a1,a2):  
  rep(a1) := a2



The Complex Case

h(a1        , …,an             , f(b0,b0), …, f(bn-1,bn-1), an) ==
h(f(a0,a0), …,f(an-1,an-1), b1,       …, bn-1          , bn)

a1

a0

an-1

an

b1

b0

bn-1

bn

f(a0,a0)

f(an-2,an-2)

f(an-1,an-1)

f(b0,b0)

f(bn-2,bn-2)

f(bn-1,bn-1)

an == bn
f(an-1,an-1) == f(bn-1,bn-1)

an-1 == bn-1      an-1 == bn-1
f(an-2,an-2) == f(bn-2,bn-2)

⠸

a1 == b1      a1 == b1
f(a0,a0) == f(b0,b0)

a0 == b0      a0 == b0

How about occurrence checks? Postpone!



Main idea 
- Represent unifier as graph

- One variable represent equivalence class

- Replace substitution by union & find operations

- Testing equality becomes testing node identity


Optimizations 
- Path compression make recurring lookups fast

- Tree balancing keeps paths short


Complexity 
- Linear in space and almost linear (inverse Ackermann) in time

- Easy to extract triangular unifier from graph

- Postpone occurrence checks to prevent traversing (potentially) large terms  

44

Union-Find
Martelli, Montanari. An Efficient 
Unification Algorithm. TOPLAS, 1982



Conclusion



What is the meaning of constraints? 
- Formally described by constraint semantics

- Semantics classifies solutions, but do not compute them

- Semantics is expressed in terms of other theories


‣ Syntactic equality

‣ Scope graph resolution


What techniques can we use to implement solvers? 
- Constraint simplification


‣ Simplification rules

‣ Depends on built-in procedures to unify or resolve names


- Unification

‣ Unifiers make terms with variables equal

‣ Unification computes most general unifiers


What is the relation between solver and semantics? 
- Soundness: any solution satisfies the semantics

- Completeness: if a solution exists, the solver finds it

- Principality: the solver computes most general solutions

46

Summary

46
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