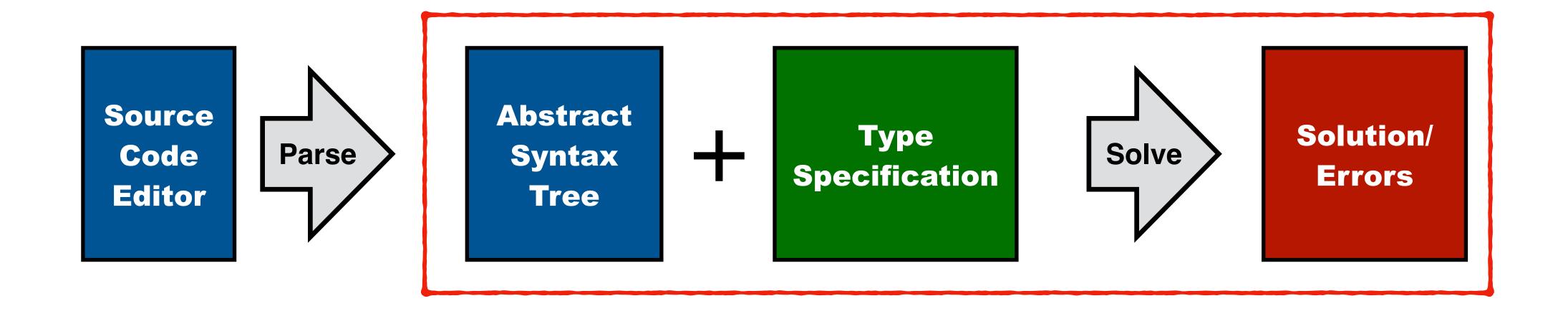
Constraint Semantics and Constraint Solving

Hendrik van Antwerpen **Eelco Visser**

CS4200 | Compiler Construction | October 1, 2020

This lecture



- Type checking with type specifications
- Semantics of a type specification
- Type checking algorithms
- Constraint solving for type specifications
- Term equality and unification

Reading Material

The following papers add background, conceptual exposition, and examples to the material from the slides. Some notation and technical details have been changed; check the documentation.

This paper describes the next generation of the approach.

Addresses (previously) open issues in expressiveness of scope graphs for type systems:

- Structural types
- Generic types

Addresses open issue with staging of information in type systems.

Introduces Statix DSL for definition of type systems.

00PSLA 2018

https://doi.org/10.1145/3276484

Scopes as Types

HENDRIK VAN ANTWERPEN, Delft University of Technology, Netherlands CASPER BACH POULSEN, Delft University of Technology, Netherlands ARJEN ROUVOET, Delft University of Technology, Netherlands EELCO VISSER, Delft University of Technology, Netherlands

Scope graphs are a promising generic framework to model the binding structures of programming languages, bridging formalization and implementation, supporting the definition of type checkers and the automation of type safety proofs. However, previous work on scope graphs has been limited to simple, nominal type systems. In this paper, we show that viewing *scopes as types* enables us to model the internal structure of types in a range of non-simple type systems (including structural records and generic classes) using the generic representation of scopes. Further, we show that relations between such types can be expressed in terms of generalized scope graph queries. We extend scope graphs with scoped relations and queries. We introduce Statix, a new domain-specific meta-language for the specification of static semantics, based on scope graphs and constraints. We evaluate the scopes as types approach and the Statix design in case studies of the simply-typed lambda calculus with records, System F, and Featherweight Generic Java.

CCS Concepts: • Software and its engineering → Semantics; Domain specific languages;

Additional Key Words and Phrases: static semantics, type system, type checker, name resolution, scope graphs, domain-specific language

ACM Reference Format:

Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser. 2018. Scopes as Types. Proc. ACM Program. Lang. 2, OOPSLA, Article 114 (November 2018), 30 pages. https://doi.org/10.1145/3276484

1 INTRODUCTION

The goal of our work is to support high-level specification of type systems that can be used for multiple purposes, including reasoning (about type safety among other things) and the implementation of type checkers [Visser et al. 2014]. Traditional approaches to type system specification do not reflect the commonality underlying the name binding mechanisms for different languages. Furthermore, operationalizing name binding in a type checker requires carefully staging the traversals of the abstract syntax tree in order to collect information before it is needed. In this paper, we introduce an approach to the declarative specification of type systems that is close in abstraction to traditional type system specifications, but can be directly interpreted as type checking rules. The approach is based on scope graphs for name resolution, and constraints to separate traversal order from solving order.

Authors' addresses: Hendrik van Antwerpen, Delft University of Technology, Delft, Netherlands, H.vanAntwerpen@tudelft. nl; Casper Bach Poulsen, Delft University of Technology, Delft, Netherlands, C.B.Poulsen@tudelft.nl; Arjen Rouvoet, Delft University of Technology, Delft, Netherlands, A.J.Rouvoet@tudelft.nl; Eelco Visser, Delft University of Technology, Delft, Netherlands, E.Visser@tudelft.nl.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2018 Copyright held by the owner/author(s). 2475-1421/2018/11-ART114 https://doi.org/10.1145/3276484

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

Good introduction to unification, which is the basis of many type inference approaches, constraint languages, and logic programming languages. Read sections 1, and 2.

Baader et al. "Chapter 8 - Unification Theory." In Handbook of Automated Reasoning, 445-533. Amsterdam: North-Holland, 2001.

https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf

Chapter 8

Unification theory

Franz Baader

Wayne Snyder

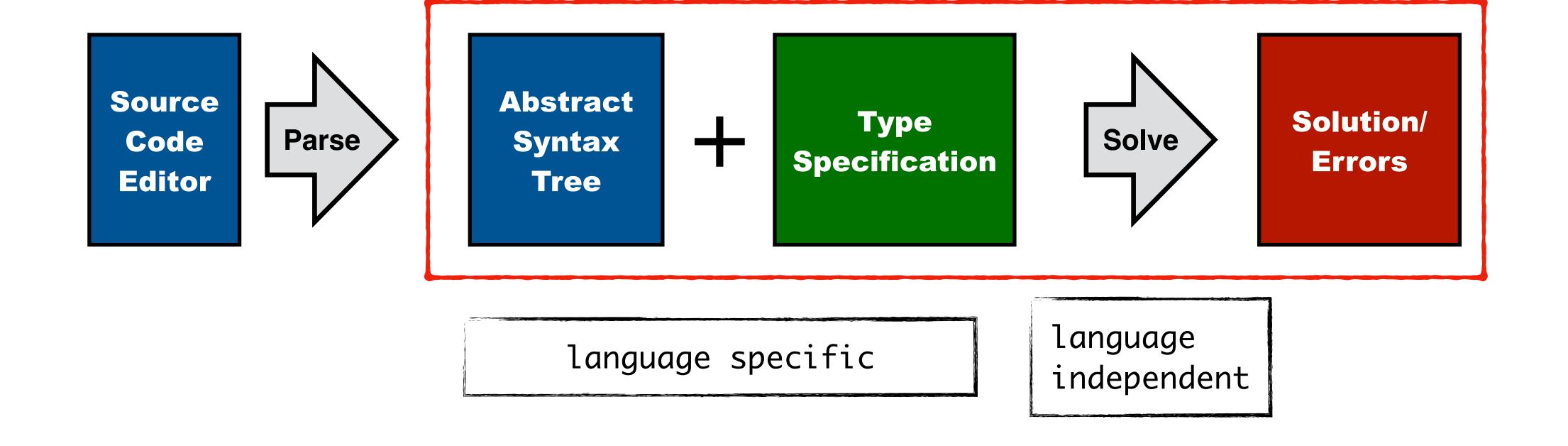
Second Readers: Paliath Narendran, Manfred Schmidt-Schauss, and Klaus Schulz.

Contents

1	Introduction
	1.1 What is unification?
	1.2 History and applications
	1.3 Approach
2	Syntactic unification
	2.1 Definitions
	2.2 Unification of terms
	2.3 Unification of term dags
3	Equational unification
	3.1 Basic notions
	3.2 New issues
	3.3 Reformulations
	3.4 Survey of results for specific theories
4	Syntactic methods for E-unification
	4.1 E-unification in arbitrary theories
	4.2 Restrictions on E-unification in arbitrary theories
	4.3 Narrowing
	4.4 Strategies and refinements of basic narrowing
5	Semantic approaches to E -unification
	5.1 Unification modulo ACU, ACUI, and AG: an example
	5.2 The class of commutative/monoidal theories
	5.3 The corresponding semiring
	5.4 Results on unification in commutative theories
6	Combination of unification algorithms
	6.1 A general combination method
	6.2 Proving correctness of the combination method
7	Further topics
	Bibliography
	Index

HANDBOOK OF AUTOMATED REASONING Edited by Alan Robinson and Andrei Voronkov © Elsevier Science Publishers B.V., 2001

Type Checking with Specifications



What are typing rules?

What are typing rules?

- Predicates that specify constraints (rule premises) on their arguments (the program)

What are typing rules?

- Predicates that specify constraints (rule premises) on their arguments (the program)
- Syntax-directed, match on program constructs (at least in Statix)

What are typing rules?

- Predicates that specify constraints (rule premises) on their arguments (the program)
- Syntax-directed, match on program constructs (at least in Statix)
- Specification of what it means to be well-typed!

What are typing rules?

- Predicates that specify constraints (rule premises) on their arguments (the program)
- Syntax-directed, match on program constructs (at least in Statix)
- Specification of what it means to be well-typed!

What are typing rules?

- Predicates that specify constraints (rule premises) on their arguments (the program)
- Syntax-directed, match on program constructs (at least in Statix)
- Specification of what it means to be well-typed!

What are the premises?

- Logical assertions that should hold for well-typed programs

What are typing rules?

- Predicates that specify constraints (rule premises) on their arguments (the program)
- Syntax-directed, match on program constructs (at least in Statix)
- Specification of what it means to be well-typed!

- Logical assertions that should hold for well-typed programs
- Specification language determines what assertions can be made

What are typing rules?

- Predicates that specify constraints (rule premises) on their arguments (the program)
- Syntax-directed, match on program constructs (at least in Statix)
- Specification of what it means to be well-typed!

- Logical assertions that should hold for well-typed programs
- Specification language determines what assertions can be made
 - ► Type equality and inequality, name resolution, ...

What are typing rules?

- Predicates that specify constraints (rule premises) on their arguments (the program)
- Syntax-directed, match on program constructs (at least in Statix)
- Specification of what it means to be well-typed!

- Logical assertions that should hold for well-typed programs
- Specification language determines what assertions can be made
 - ► Type equality and inequality, name resolution, ...
- Determines the expressiveness of the specification!

What are typing rules?

- Predicates that specify constraints (rule premises) on their arguments (the program)
- Syntax-directed, match on program constructs (at least in Statix)
- Specification of what it means to be well-typed!

What are the premises?

- Logical assertions that should hold for well-typed programs
- Specification language determines what assertions can be made
 - ► Type equality and inequality, name resolution, ...
- Determines the expressiveness of the specification!

Solving

What are typing rules?

- Predicates that specify constraints (rule premises) on their arguments (the program)
- Syntax-directed, match on program constructs (at least in Statix)
- Specification of what it means to be well-typed!

What are the premises?

- Logical assertions that should hold for well-typed programs
- Specification language determines what assertions can be made
 - ► Type equality and inequality, name resolution, ...
- Determines the expressiveness of the specification!

Solving

- Given an initial predicate that must hold, ...

What are typing rules?

- Predicates that specify constraints (rule premises) on their arguments (the program)
- Syntax-directed, match on program constructs (at least in Statix)
- Specification of what it means to be well-typed!

What are the premises?

- Logical assertions that should hold for well-typed programs
- Specification language determines what assertions can be made
 - ► Type equality and inequality, name resolution, ...
- Determines the expressiveness of the specification!

Solving

- Given an initial predicate that must hold, ...
- find an assignment for all logical variables, such that the predicate is satisfied

Challenges for type checker implementations?

Challenges for type checker implementations?

- Collecting (non-lexical) binding information before use

Challenges for type checker implementations?

- Collecting (non-lexical) binding information before use
- Dealing with unknown (type) values

Challenges for type checker implementations?

- Collecting (non-lexical) binding information before use
- Dealing with unknown (type) values

Separation of what from how

Challenges for type checker implementations?

- Collecting (non-lexical) binding information before use
- Dealing with unknown (type) values

Separation of what from how

- Typing rules says what is a well-typed program

Challenges for type checker implementations?

- Collecting (non-lexical) binding information before use
- Dealing with unknown (type) values

Separation of what from how

- Typing rules says what is a well-typed program
- Solver says how to determine that a program is well-typed

Challenges for type checker implementations?

- Collecting (non-lexical) binding information before use
- Dealing with unknown (type) values

Separation of what from how

- Typing rules says what is a well-typed program
- Solver says how to determine that a program is well-typed

Separation of computation from program structure

Challenges for type checker implementations?

- Collecting (non-lexical) binding information before use
- Dealing with unknown (type) values

Separation of what from how

- Typing rules says what is a well-typed program
- Solver says how to determine that a program is well-typed

Separation of computation from program structure

- Typing rules follow the structure of the program

Challenges for type checker implementations?

- Collecting (non-lexical) binding information before use
- Dealing with unknown (type) values

Separation of what from how

- Typing rules says what is a well-typed program
- Solver says how to determine that a program is well-typed

Separation of computation from program structure

- Typing rules follow the structure of the program
- Solver is flexible in order of resolution

Challenges for type checker implementations?

- Collecting (non-lexical) binding information before use
- Dealing with unknown (type) values

Separation of what from how

- Typing rules says what is a well-typed program
- Solver says how to determine that a program is well-typed

Separation of computation from program structure

- Typing rules follow the structure of the program
- Solver is flexible in order of resolution

Approach: reusable solver for the specification language

Challenges for type checker implementations?

- Collecting (non-lexical) binding information before use
- Dealing with unknown (type) values

Separation of what from how

- Typing rules says what is a well-typed program
- Solver says how to determine that a program is well-typed

Separation of computation from program structure

- Typing rules follow the structure of the program
- Solver is flexible in order of resolution

Approach: reusable solver for the specification language

- Support logical variables for unknowns and infer their values

Challenges for type checker implementations?

- Collecting (non-lexical) binding information before use
- Dealing with unknown (type) values

Separation of what from how

- Typing rules says what is a well-typed program
- Solver says how to determine that a program is well-typed

Separation of computation from program structure

- Typing rules follow the structure of the program
- Solver is flexible in order of resolution

Approach: reusable solver for the specification language

- Support logical variables for unknowns and infer their values
- Automatically determine correct resolution order

Constraint Semantics

What gives constraints meaning?

What is the meaning of constraints?

```
ty == FUN(ty1,ty2)
Var{x} in s I-> d
ty1 == INT()
```

What gives constraints meaning?

What is the meaning of constraints?

- What is a valid solution?

```
ty == FUN(ty1,ty2)
Var{x} in s l-> d
ty1 == INT()
```

What is the meaning of constraints?

- What is a valid solution?
- Or: in which models are the constraints satisfied?

```
ty == FUN(ty1,ty2)
Var{x} in s I-> d
ty1 == INT()
```

What is the meaning of constraints?

- What is a valid solution?
- Or: in which models are the constraints satisfied?
- Can we describe this independent of an algorithm to find a solution?

```
ty == FUN(ty1,ty2)
Var{x} in s |-> d
ty1 == INT()
```

What is the meaning of constraints?

- What is a valid solution?
- Or: in which models are the constraints satisfied?
- Can we describe this independent of an algorithm to find a solution?

```
ty == FUN(ty1,ty2)
Var{x} in s |-> d
ty1 == INT()
```

What is the meaning of constraints?

- What is a valid solution?
- Or: in which models are the constraints satisfied?
- Can we describe this independent of an algorithm to find a solution?

When are constraints satisfied?

- Formally described by the declarative semantics

```
ty == FUN(ty1,ty2)
Var{x} in s I-> d
ty1 == INT()
```

What is the meaning of constraints?

- What is a valid solution?
- Or: in which models are the constraints satisfied?
- Can we describe this independent of an algorithm to find a solution?

- Formally described by the declarative semantics
- Written as G,φ ⊨ C

```
ty == FUN(ty1,ty2)
Var{x} in s |-> d
ty1 == INT()
```

What is the meaning of constraints?

- What is a valid solution?
- Or: in which models are the constraints satisfied?
- Can we describe this independent of an algorithm to find a solution?

- Formally described by the declarative semantics
- Written as G,φ ⊨ C
- Satisfied in a model

```
ty == FUN(ty1,ty2)
Var{x} in s I-> d
ty1 == INT()
```

What is the meaning of constraints?

- What is a valid solution?
- Or: in which models are the constraints satisfied?
- Can we describe this independent of an algorithm to find a solution?

- Formally described by the declarative semantics
- Written as G,φ ⊨ C
- Satisfied in a model
 - Substitution φ (read: phi)

```
ty == FUN(ty1,ty2)
Var{x} in s |-> d
ty1 == INT()
```

What is the meaning of constraints?

- What is a valid solution?
- Or: in which models are the constraints satisfied?
- Can we describe this independent of an algorithm to find a solution?

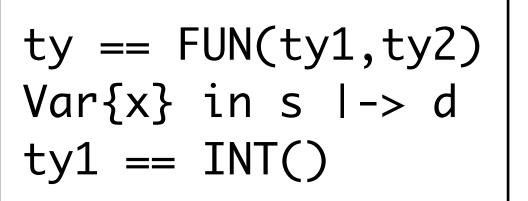
- Formally described by the declarative semantics
- Written as G,φ ⊨ C
- Satisfied in a model
 - Substitution φ (read: phi)
 - Scope graph G

```
ty == FUN(ty1,ty2)
Var{x} in s |-> d
ty1 == INT()
```

What is the meaning of constraints?

- What is a valid solution?
- Or: in which models are the constraints satisfied?
- Can we describe this independent of an algorithm to find a solution?

- Formally described by the declarative semantics
- Written as G,φ ⊨ C
- Satisfied in a model
 - Substitution φ (read: phi)
 - Scope graph G
- Describes for every type of constraint when it is satisfied



Syntax

Syntax

Syntax

```
G, \phi \models t == u if \phi(t) = \phi(u)
```

Syntax

```
G, \varphi \vDash t == u \qquad \qquad \text{if } \varphi(t) = \varphi(u) G, \varphi \vDash r \text{ in s } l \rightarrow d \qquad \qquad \text{if } \varphi(r) = x \\ \text{and } \varphi(d) = x \\ \text{and } \varphi(s) = \#i \\ \text{and } x \text{ resolves to } x \text{ from } \#i \text{ in } G
```

Syntax

```
G, \varphi \vDash t == u \qquad \qquad \text{if } \varphi(t) = \varphi(u)
G, \varphi \vDash r \text{ in s } l \rightarrow d \qquad \qquad \text{if } \varphi(r) = x \qquad \qquad \text{and } \varphi(d) = x \qquad \qquad \text{and } \varphi(s) = \#i \qquad \qquad \text{and } x \text{ resolves to } x \text{ from } \#i \text{ in } G
G, \varphi \vDash C_1 \ \land C_2 \qquad \qquad \text{if } G, \varphi \vDash C_1 \text{ and } G, \varphi \vDash C_2
```

Using the Semantics

Program

Program constraints

```
ty1 == INT()
INT() == INT()
"i" in #s1 l-> d1
ty2 == INT()
"f" in #s0 l-> d2
ty3 == FUN(ty4,ty5)
ty4 == INT()
...
```

Unifier ϕ (model)

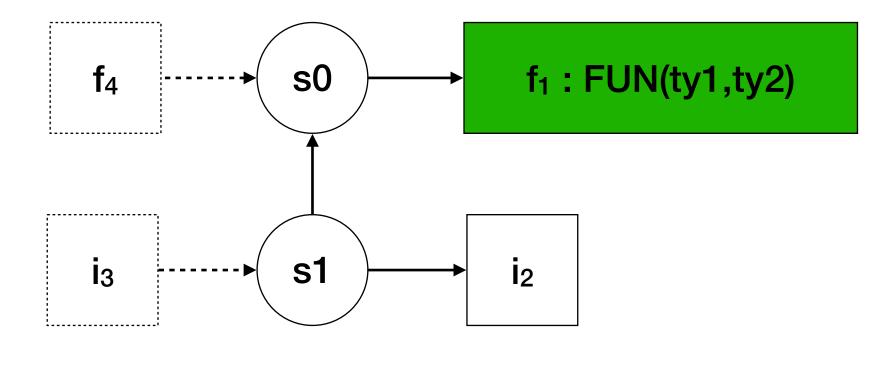
Constraint semantics

```
G, \phi \models t == u
if \phi(t) = \phi(u)

G, \phi \models r \text{ in } s \mid -> d
if \phi(r) = x
and \phi(d) = x
and \phi(s) = \#i
and x \text{ resolves to } x \text{ from } \#i \text{ in } G

G, \phi \models C_1 / \setminus C_2
if G, \phi \models C_1
and G, \phi \models C_2
```

Scope graph G (model)



Program

Program constraints

```
ty1 == INT()
INT() == INT()
"i" in #s1 |-> d1
ty2 == INT()
"f" in #s0 |-> d2
ty3 == FUN(ty4, ty5)
ty4 == INT()
...
```

Unifier ϕ (model)

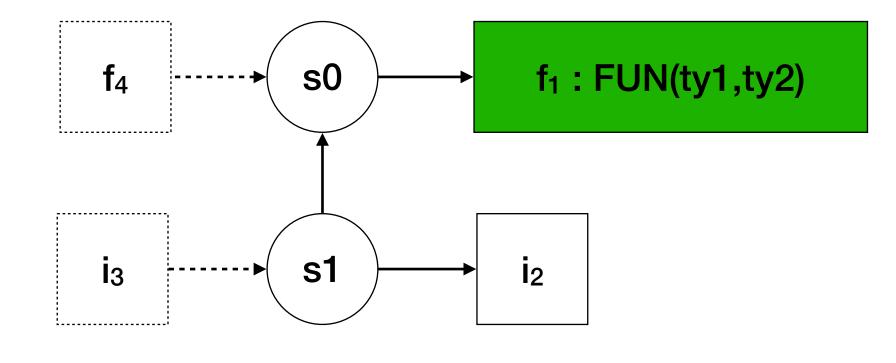
Constraint semantics

```
G, \phi \models t == u
if \phi(t) = \phi(u)

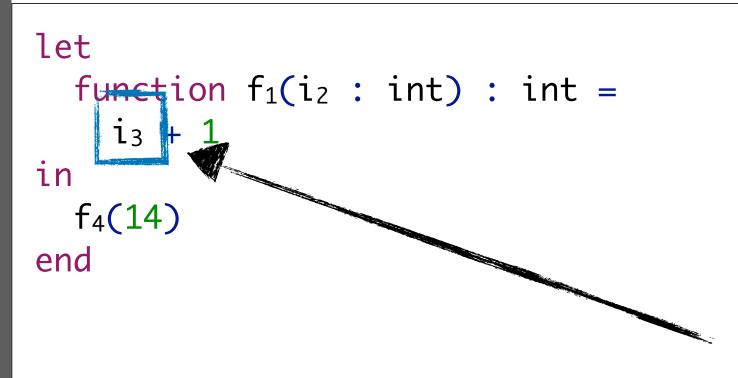
G, \phi \models r \text{ in } s \mid -> d
if \phi(r) = x
and \phi(d) = x
and \phi(s) = \#i
and x \text{ resolves to } x \text{ from } \#i \text{ in } G

G, \phi \models C_1 / \setminus C_2
if G, \phi \models C_1
and G, \phi \models C_2
```

Scope graph G (model)



Program



Program constraints

Unifier ϕ (model)

Constraint semantics

$$G, \phi \models t == u$$

 $if \phi(t) = \phi(u)$

$$G, \phi \models r \text{ in } s \mid -> d$$

if $\phi(r) = x$

and $\phi(d) = x$

and $\phi(s) = \#i$

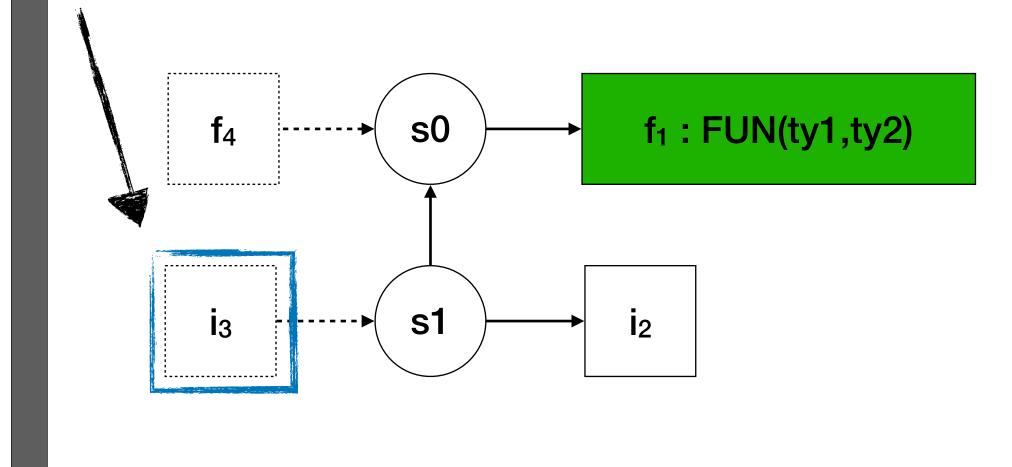
and $x \text{ resolves to } x \text{ from } \#i \text{ in } G$

$$G, \phi \models C_1 / \setminus C_2$$

$$if \quad G, \phi \models C_1$$

$$and \quad G, \phi \models C_2$$

Object language variables



Program

Program constraints

```
ty1 == INT()
INT() == INT()
"i" in #s1 l-> d1
ty2 == INT()
"f" in #s0 l-> d2
ty3 == FUN(ty4, ty5)
ty4 == INT()
```

Unifier ϕ (model)

Constraint semantics

$$G, \phi \models t == u$$

 $if \phi(t) = \phi(u)$

$$G, \phi \models r \text{ in } s \mid -> d$$

if $\phi(r) = x$

and $\phi(d) = x$

and $\phi(s) = \#i$

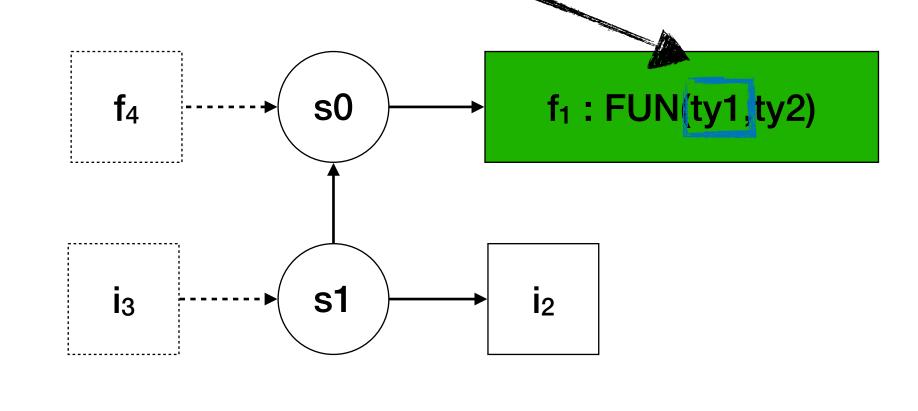
and $x \text{ resolves to } x \text{ from } \#i \text{ in } G$

$$G, \phi \models C_1 / \setminus C_2$$

$$if \quad G, \phi \models C_1$$

$$and \quad G, \phi \models C_2$$

Constraint / logic variables



Program

Program constraints

```
ty1 == INT()
INT() == INT()
"i" in #s1 l-> d1
ty2 == INT()
"f" in #s0 l-> d2
ty3 == FUN(ty4,ty5)
ty4 == INT()
```

Unifier ϕ (model)

```
φ = { ty1 -> INT(),
    ty2 -> INT(),
    ty3 -> FUN(INT(),ty5),
    ty4 -> INT(),
    d1 -> "i",
    d2 -> "f"
}
```

Constraint semantics

$$G, \phi \models t == u$$

$$if \phi(t) = \phi(u)$$

$$G, \phi \models r \text{ in } s \mid -> d$$

if $\phi(r) = x$

and $\phi(d) = x$

and $\phi(s) = \#i$

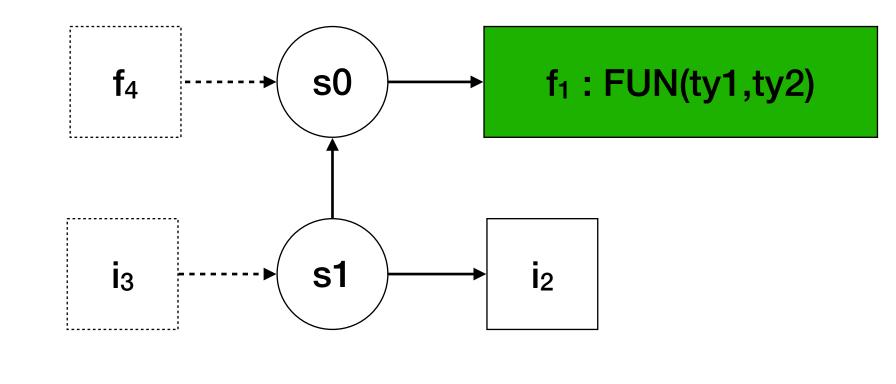
and $x \text{ resolves to } x \text{ from } \#i \text{ in } G$

$$G, \varphi \models C_1 / \setminus C_2$$

$$if \quad G, \varphi \models C_1$$

$$and \quad G, \varphi \models C_2$$

Semantics meta-variables



Type Checking

What should a type checker do?

- Check that a program is well-typed!

- Check that a program is well-typed!
- Resolve names, and check or compute types

- Check that a program is well-typed!
- Resolve names, and check or compute types
- Report useful error messages

- Check that a program is well-typed!
- Resolve names, and check or compute types
- Report useful error messages
- Provide a representation of name and type information

- Check that a program is well-typed!
- Resolve names, and check or compute types
- Report useful error messages
- Provide a representation of name and type information
 - Type annotated AST

What should a type checker do?

- Check that a program is well-typed!
- Resolve names, and check or compute types
- Report useful error messages
- Provide a representation of name and type information
 - Type annotated AST

This information is used for

What should a type checker do?

- Check that a program is well-typed!
- Resolve names, and check or compute types
- Report useful error messages
- Provide a representation of name and type information
 - Type annotated AST

This information is used for

- Next compiler steps (optimization, code generation, ...)

What should a type checker do?

- Check that a program is well-typed!
- Resolve names, and check or compute types
- Report useful error messages
- Provide a representation of name and type information
 - Type annotated AST

This information is used for

- Next compiler steps (optimization, code generation, ...)
- IDE (error reporting, code completion, refactoring, ...)

What should a type checker do?

- Check that a program is well-typed!
- Resolve names, and check or compute types
- Report useful error messages
- Provide a representation of name and type information
 - Type annotated AST

This information is used for

- Next compiler steps (optimization, code generation, ...)
- IDE (error reporting, code completion, refactoring, ...)
- Other tools (API documentation, ...)

What should a type checker do?

- Check that a program is well-typed!
- Resolve names, and check or compute types
- Report useful error messages
- Provide a representation of name and type information
 - Type annotated AST

This information is used for

- Next compiler steps (optimization, code generation, ...)
- IDE (error reporting, code completion, refactoring, ...)
- Other tools (API documentation, ...)

How are type checkers implemented?

Computing Type of Expression (recap)

```
function (a : int) = a + 1
Fun("a", INT(),
    Plus(Var("a"), Int(1)))
     FUN(INT(), INT())
```

```
typeOfExp(s, Int(_)) = INT().
type0fExp(s, Plus(e1, e2)) = INT() :-
 typeOfExp(s, e1) == INT(),
 type0fExp(s, e2) == INT().
typeOfExp(s, Fun(x, te, e)) = FUN(S, T) :- \{s_fun\}
 typeOfTypeExp(s, te) == S,
 new s_fun, s_fun -P-> s,
  s_fun -> Var{x} with typeOfDecl S,
 type0fExp(s_fun, e) == T.
type0fExp(s, Var(x)) = T :-
 typeOfDecl of Var\{x\} in s I\rightarrow [(\_, (\_, T))].
```

Computing Type of Expression (recap)

```
function (a : int) = a + 1
Fun("a", INT(),
    Plus(Var("a"), Int(1)))
     FUN(INT(), INT())
```

```
typeOfExp(s, Int(_)) = INT().
typeOfExp(s, Plus(e1, e2)) = INT() :-
 typeOfExp(s, e1) == INT(),
 type0fExp(s, e2) == INT().
typeOfExp(s, Fun(x, te, e)) = FUN(S, T) :- \{s_fun\}
 typeOfTypeExp(s, te) == S,
 new s_fun, s_fun -P-> s,
  s_fun -> Var{x} with typeOfDecl S,
 type0fExp(s_fun, e) == T.
type0fExp(s, Var(x)) = T :-
 typeOfDecl of Var\{x\} in s \mapsto [(_, (_, T))].
```

- Can be executed top down, in premise order

Computing Type of Expression (recap)

```
function (a : int) = a + 1
Fun("a", INT(),
    Plus(Var("a"), Int(1)))
     FUN(INT(), INT())
```

```
typeOfExp(s, Int(_)) = INT().
typeOfExp(s, Plus(e1, e2)) = INT() :-
 typeOfExp(s, e1) == INT(),
 type0fExp(s, e2) == INT().
typeOfExp(s, Fun(x, te, e)) = FUN(S, T) := \{s_fun\}
 typeOfTypeExp(s, te) == S,
 new s_fun, s_fun -P-> s,
  s_fun -> Var{x} with typeOfDecl S,
 typeOfExp(s_fun, e) == T.
type0fExp(s, Var(x)) = T :-
 typeOfDecl of Var\{x\} in s \mapsto [(\_, (\_, T))].
```

- Can be executed top down, in premise order
- Could be written almost like this in a functional language

Inferring the Type of a Parameter

```
function (a : int) = a + 1
Fun("a", INT(),
    Plus(Var("a"), Int(1)))
     FUN(INT(), INT())
```

```
typeOfExp(s, Int(_)) = INT().
type0fExp(s, Plus(e1, e2)) = INT() :-
 typeOfExp(s, e1) == INT(),
 type0fExp(s, e2) == INT().
typeOfExp(s, Fun(x, te, e)) = FUN(S, T) :- \{s_fun\}
 typeOfTypeExp(s, te) == S,
 new s_fun, s_fun -P-> s,
  s_fun -> Var{x} with typeOfDecl S,
 type0fExp(s_fun, e) == T.
type0fExp(s, Var(x)) = T :-
 typeOfDecl of Var\{x\} in s I\rightarrow [(\_, (\_, T))].
```

```
function (a - b) = a + 1
Fun("a", INT(),
   Plus(Var("a"), Int(1)))
     FUN(INT(), INT())
```

```
typeOfExp(s, Int(_)) = INT().
type0fExp(s, Plus(e1, e2)) = INT() :-
 typeOfExp(s, e1) == INT(),
 type0fExp(s, e2) == INT().
typeOfExp(s, Fun(x, te, e)) = FUN(S, T) :- \{s_fun\}
 typeOfTypeExp(s, te) == S,
 new s_fun, s_fun -P-> s,
  s_fun -> Var{x} with typeOfDecl S,
 typeOfExp(s_fun, e) == T.
type0fExp(s, Var(x)) = T :-
 typeOfDecl of Var\{x\} in s I\rightarrow [(\_, (\_, T))].
```

```
function (a - b) = a + 1
Fun("a",
   Plus(Var("a"), Int(1)))
     FUN(INT(), INT())
```

```
typeOfExp(s, Int(_)) = INT().
type0fExp(s, Plus(e1, e2)) = INT() :-
 typeOfExp(s, e1) == INT(),
 type0fExp(s, e2) == INT().
typeOfExp(s, Fun(x, te, e)) = FUN(S, T) :- \{s_fun\}
 typeOfTypeExp(s, te) == S,
 new s_fun, s_fun -P-> s,
  s_fun -> Var{x} with typeOfDecl S,
 typeOfExp(s_fun, e) == T.
type0fExp(s, Var(x)) = T :-
 typeOfDecl of Var\{x\} in s I\rightarrow [(\_, (\_, T))].
```

```
function (a - b - b) = a + 1
Fun("a",
    Plus(Var("a"), Int(1)))
     FUN(INT(), INT())
```

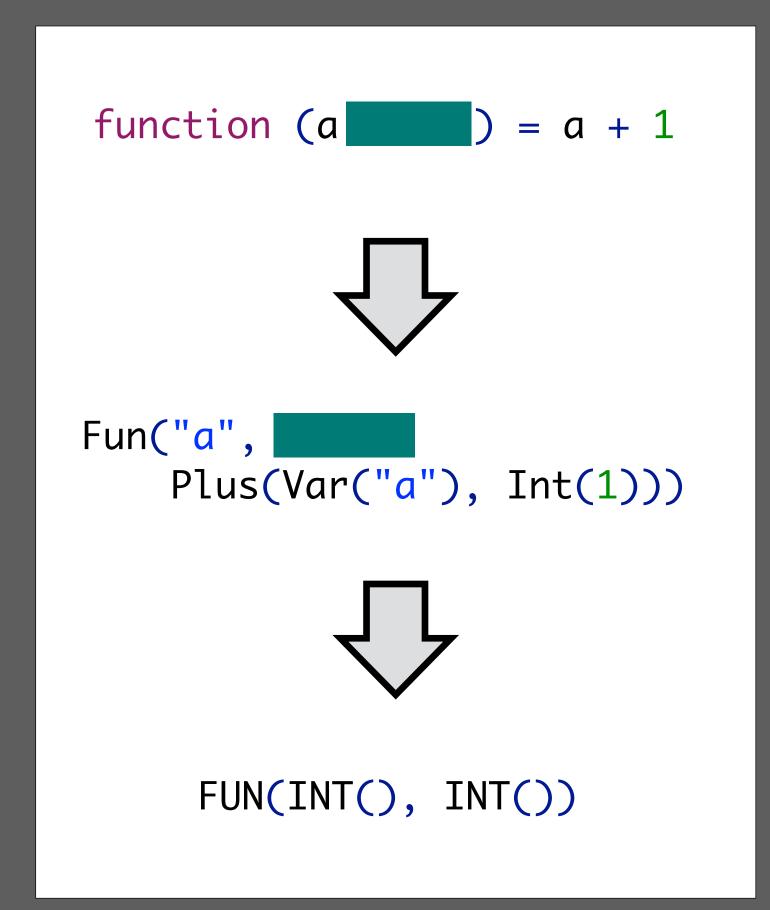
```
type0fExp(s, Int(_)) = INT().
typeOfExp(s, Plus(e1, e2)) = INT() :-
 typeOfExp(s, e1) == INT(),
 type0fExp(s, e2) == INT().
typeOfExp(s, Fun(x, te, e)) = FUN(S, T) :- \{s_fun\}
 typeOfTypeExp(s, te) == S,
 new s_fun, s_fun -P-> s,
  s_fun -> Var{x} with typeOfDecl S,
 typeOfExp(s_fun, e) == T.
type0fExp(s, Var(x)) = T :-
 typeOfDecl of Var\{x\} in s \mapsto [(\_, (\_, T))].
```

- What are the consequences for our typing rules?

```
function (a - b - b) = a + 1
Fun("a",
    Plus(Var("a"), Int(1)))
     FUN(INT(), INT())
```

```
typeOfExp(s, Int(_)) = INT().
type0fExp(s, Plus(e1, e2)) = INT() :-
 typeOfExp(s, e1) == INT(),
 type0fExp(s, e2) == INT().
typeOfExp(s, Fun(x, e)) = FUN(S, T) :- {s_fun}
 new s_fun, s_fun -P-> s,
  s_fun -> Var{x} with typeOfDecl S,
 typeOfExp(s_fun, e) == T.
type0fExp(s, Var(x)) = T :-
 typeOfDecl of Var\{x\} in s \mapsto [(\_, (\_, T))].
```

- What are the consequences for our typing rules?



Unknown S!

```
typeOfExp(s, Int(_)) = INT().

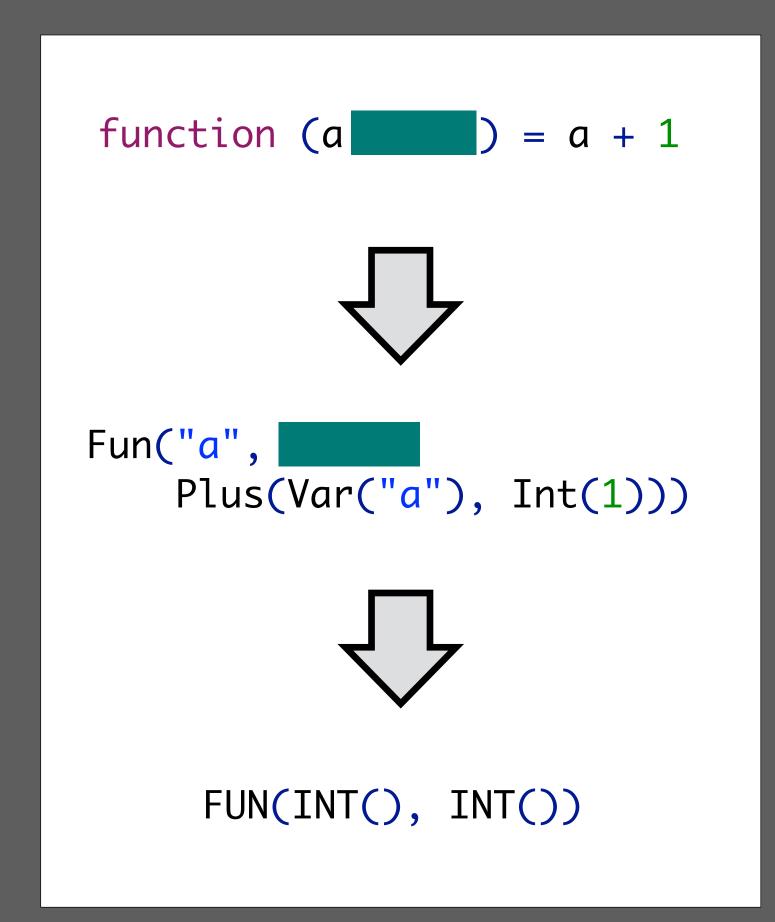
typeOfExp(s, Plus(e1, e2)) = INT() :-
    typeOfExp(s, e1) == INT(),
    typeOfExp(s, e2) == INT().

typeOfExp(s, Fun(x, e)) = FUN(S, T) :- {s_fun}

new s_fun, s_fun -P-> s,
    s_fun -> Var{x} with typeOfDecl S,
    typeOfExp(s_fun, e) == T.

typeOfExp(s, Var(x)) = T :-
    typeOfDecl of Var{x} in s l-> [(_, (_, T))].
```

- What are the consequences for our typing rules?



Unknown S!

```
typeOfExp(s, Int(_)) = INT().

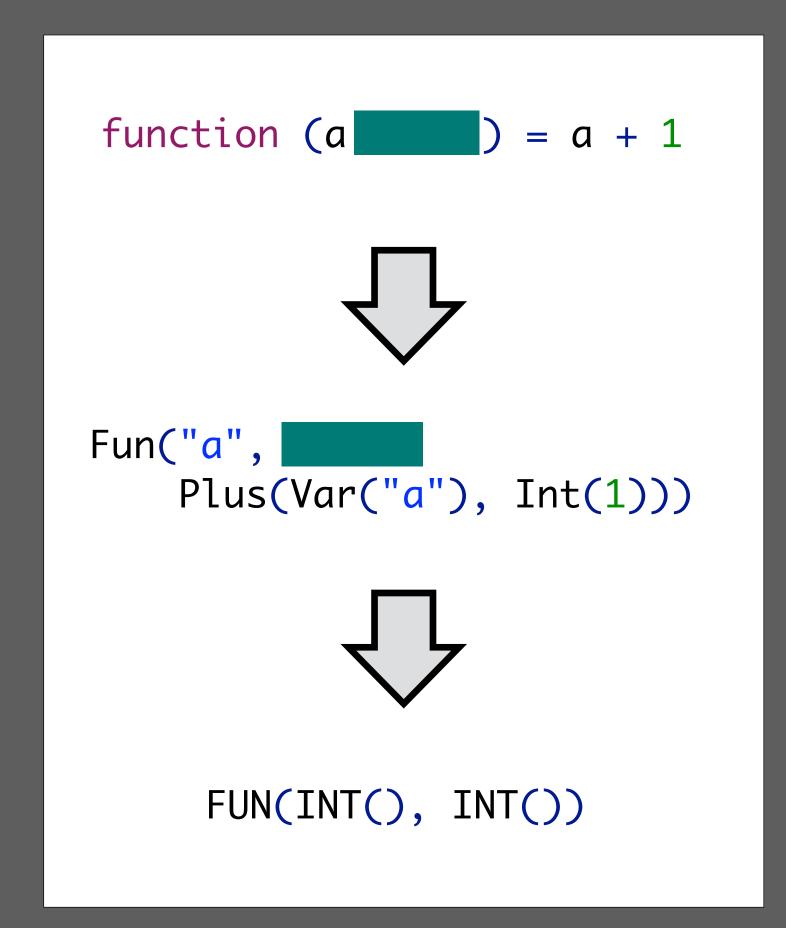
typeOfExp(s, Plus(e1, e2)) = INT() :-
    typeOfExp(s, e1) == INT(),
    typeOfExp(s, e2) == INT().

typeOfExp(s, Fun(x, e)) = FUN(S, T) :- {s_fun}

new s_fun, s_fun -P-> s,
    s_fun -> Var{x} with typeOfDecl S,
    typeOfExp(s_fun, e) == T.

typeOfExp(s, Var(x)) = T :-
    typeOfDecl of Var{x} in s l-> [(_, (_, T))].
```

- What are the consequences for our typing rules?
- Types are not known from the start, but learned gradually



Unknown S!

```
typeOfExp(s, Int(_)) = INT().

typeOfExp(s, Plus(e1, e2)) = INT() :-
    typeOfExp(s, e1) == INT(),
    typeOfExp(s, e2) == INT().

typeOfExp(s, Fun(x, e)) = FUN(S, T) :- {s_fun}

new s_fun, s_fun -P-> s,
    s_fun -> Var{x} with typeOfDecl S,
    typeOfExp(s_fun, e) == T.

typeOfExp(s, Var(x)) = T :-
    typeOfDecl of Var{x} in s |-> [(_, (_, T))].
```

- What are the consequences for our typing rules?
- Types are not known from the start, but learned gradually
- A simple top-down traversal is insufficient

```
class A {
    B m() {
        return new C();
class B {
    int i;
class C extends B {
   int m(A a) {
        return a.m().i;
```

```
class A {
    B m() {
        return new C();
class B {
    int i;
class C extends B {
   int m(A a) {
        return a.m().i;
```

How can we type check this program?

- Is there a possible single traversal strategy here?
- Why are the type annotations not enough?
- What strategy could be used?

```
class A {
    B m() {
        return new C();
class B {
    int i;
class C extends B {
   int m(A a) {
        return a.m().i;
```

How can we type check this program?

- Is there a possible single traversal strategy here?
- Why are the type annotations not enough?
- What strategy could be used?

Two-pass approach

- The first pass builds a class table
- The second pass checks expressions using the class table

```
class A {
    B m() {
        return new C();
class B {
    int i;
class C extends B {
   int m(A a) {
        return a.m().i;
```

How can we type check this program?

- Is there a possible single traversal strategy here?
- Why are the type annotations not enough?
- What strategy could be used?

Two-pass approach

- The first pass builds a class table
- The second pass checks expressions using the class table

Question

 Does this still work if we introduce nested classes?

```
function (a - b - b) = a + 1
Fun("a",
    Plus(Var("a"), Int(1)))
     FUN(?S, INT())
```

```
typeOfExp(s, Int(_)) = INT().
type0fExp(s, Plus(e1, e2)) = INT() :-
 typeOfExp(s, e1) == INT(),
 type0fExp(s, e2) == INT().
typeOfExp(s, Fun(x, e)) = FUN(S, T) :- {s_fun}
 new s_fun, s_fun -P-> s,
  s_fun -> Var{x} with typeOfDecl S,
 type0fExp(s_fun, e) == T.
type0fExp(s, Var(x)) = T :-
 typeOfDecl of Var\{x\} in s \mapsto [(\_, (\_, T))].
```

```
function (a - b - b) = a + 1
Fun("a",
    Plus(Var("a"), Int(1)))
     FUN(?S, INT())
```

```
typeOfExp(s, Int(_)) = INT().
type0fExp(s, Plus(e1, e2)) = INT() :-
 typeOfExp(s, e1) == INT(),
 type0fExp(s, e2) == INT().
typeOfExp(s, Fun(x, e)) = FUN(S, T) :- {s_fun}
  new s_fun, s_fun -P-> s,
  s_fun -> Var{x} with typeOfDecl S,
  typeOfExp(s_fun, e) == T.
type0fExp(s, Var(x)) = T :-
 typeOfDecl of Var\{x\} in s \mapsto [(\_, (\_, T))].
```

```
function (a - b - b) = a + 1
Fun("a",
    Plus(Var("a"), Int(1)))
```

```
typeOfExp(s, Int(_)) = INT().
type0fExp(s, Plus(e1, e2)) = INT() :-
 typeOfExp(s, e1) == INT(),
 type0fExp(s, e2) == INT().
typeOfExp(s, Fun(x, e)) = FUN(S, T) :- {s_fun}
  new s_fun, s_fun -P-> s,
  s_fun -> Var{x} with typeOfDecl S,
  typeOfExp(s_fun, e) == T.
type0fExp(s, Var(x)) = T :-
 typeOfDecl of Var\{x\} in s \mapsto [(\_, (\_, T))].
```

```
function (a - b - b) = a + 1
Fun("a",
    Plus(Var("a"), Int(1)))
     FUN(?S, INT()) + ?S == INT()
```

```
typeOfExp(s, Int(_)) = INT().
type0fExp(s, Plus(e1, e2)) = INT() :-
 typeOfExp(s, e1) == INT(),
 type0fExp(s, e2) == INT().
typeOfExp(s, Fun(x, e)) = FUN(S, T) :- {s_fun}
  new s_fun, s_fun -P-> s,
  s_fun -> Var{x} with typeOfDecl S,
  typeOfExp(s_fun, e) == T.
type0fExp(s, Var(x)) = T :-
 typeOfDecl of Var\{x\} in s \mapsto [(_, (_, T))].
```

```
function (a - b - b) = a + 1
Fun("a",
    Plus(Var("a"), Int(1)))
     FUN(?S, INT()) + ?S == INT()
        ?S := INT()
```

```
typeOfExp(s, Int(_)) = INT().
type0fExp(s, Plus(e1, e2)) = INT() :-
  typeOfExp(s, e1) == INT(),
 type0fExp(s, e2) == INT().
typeOfExp(s, Fun(x, e)) = FUN(S, T) :- {s_fun}
  new s_fun, s_fun -P-> s,
  s_fun -> Var{x} with typeOfDecl S,
  typeOfExp(s_fun, e) == T.
type0fExp(s, Var(x)) = T :-
  typeOfDecl of Var\{x\} in s \mapsto [(_, (_, T))].
```

What are challenges when implementing a type checker?

What are challenges when implementing a type checker?

- Collecting necessary binding information before using it

What are challenges when implementing a type checker?

- Collecting necessary binding information before using it
- Gradually learning type information

What are challenges when implementing a type checker?

- Collecting necessary binding information before using it
- Gradually learning type information

What are the consequences of these challenges?

What are challenges when implementing a type checker?

- Collecting necessary binding information before using it
- Gradually learning type information

What are the consequences of these challenges?

The order of computation needs to be more flexible than the AST traversal

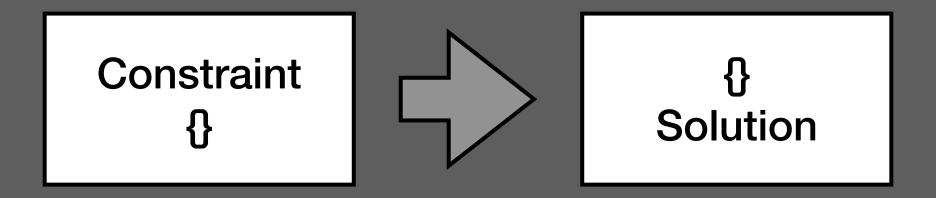
What are challenges when implementing a type checker?

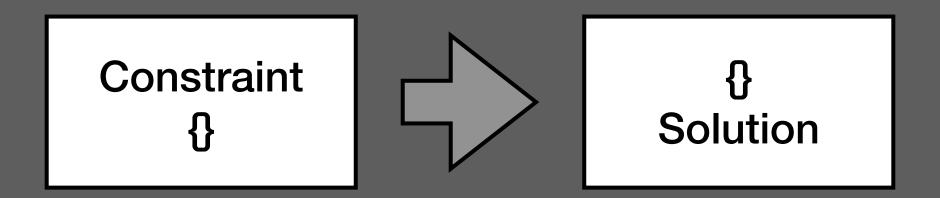
- Collecting necessary binding information before using it
- Gradually learning type information

What are the consequences of these challenges?

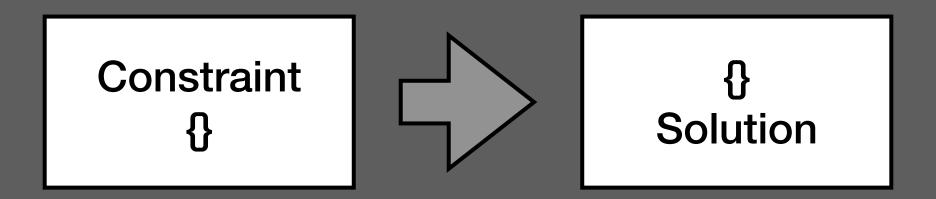
- The order of computation needs to be more flexible than the AST traversal
- Support explicit logical variables during solving

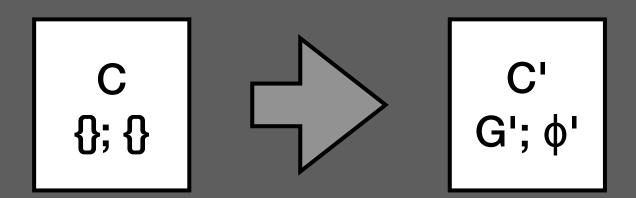
Solving Constraints

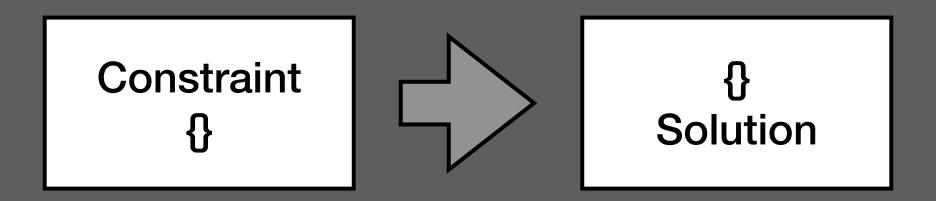


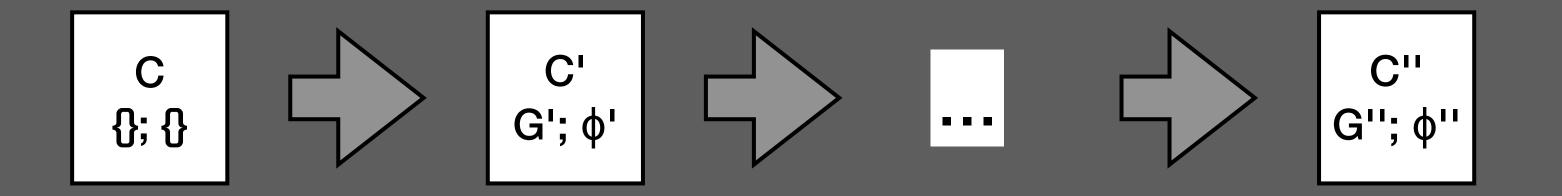


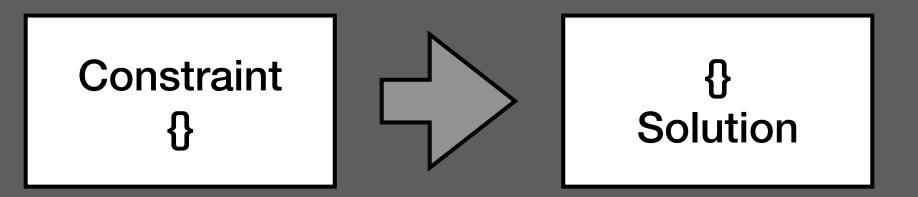
C {};{}











 $\langle C; G, \varphi \rangle \longrightarrow \langle C; G, \varphi \rangle$

$$\langle C; G, \varphi \rangle \longrightarrow \langle C; G, \varphi \rangle$$

u, C; G,
$$\phi$$
> \longrightarrow \phi'> where unify(ϕ ,t, u) = ϕ '

Non-deterministic constraint selection

$$\langle C; G, \varphi \rangle \longrightarrow \langle C; G, \varphi \rangle$$

$$<$$
t = u , C; G, ϕ > \longrightarrow $<$ C; G, ϕ '> where unify(ϕ ,t,u) = ϕ '

$$\langle C; G, \varphi \rangle \longrightarrow \langle C; G, \varphi \rangle$$

$$\langle C; G, \varphi \rangle \longrightarrow \langle C; G, \varphi \rangle$$

$$\langle C; G, \varphi \rangle \longrightarrow \langle C; G, \varphi \rangle$$

$$<$$
t $=$ u, C; G, ϕ > \longrightarrow \phi'> where unify(ϕ ,t,u) $=$ ϕ '

 $<$ s1 -L \rightarrow s2, C; G, ϕ > \longrightarrow \phi> where ϕ (s1) $=$ #i, ϕ (s2) $=$ #j, G + {#i -L \rightarrow #j} $=$ G'

 $<$ r in s \longmapsto t, C; G, ϕ > \longrightarrow = d; G, ϕ > where ϕ (r) $=$ Ns{x}, ϕ (s) $=$ #i, resolve(G , #i, Ns{x}) $=$ d

Scope graph and name resolution algorithm don't have to know about logical variables

```
\langle C; G, \varphi \rangle \longrightarrow \langle C; G, \varphi \rangle
```

```
def solve(C):
   if <C; {}, {}> →* <{}; G, φ>:
     return <G, φ>
   else:
     fail
```

Solver = rewrite system

Solver = rewrite system

- Rewrite a constraints set + solution

- Rewrite a constraints set + solution
- Simplifying and eliminating constraints

- Rewrite a constraints set + solution
- Simplifying and eliminating constraints
 - Constraint selecting is non-deterministic

- Rewrite a constraints set + solution
- Simplifying and eliminating constraints
 - Constraint selecting is non-deterministic
 - Resolution order is controlled by side conditions on rewrite rules

- Rewrite a constraints set + solution
- Simplifying and eliminating constraints
 - Constraint selecting is non-deterministic
 - Resolution order is controlled by side conditions on rewrite rules
- Rely on (other) solvers and algorithms for base cases

- Rewrite a constraints set + solution
- Simplifying and eliminating constraints
 - Constraint selecting is non-deterministic
 - Resolution order is controlled by side conditions on rewrite rules
- Rely on (other) solvers and algorithms for base cases
 - Unification for term equality

- Rewrite a constraints set + solution
- Simplifying and eliminating constraints
 - Constraint selecting is non-deterministic
 - Resolution order is controlled by side conditions on rewrite rules
- Rely on (other) solvers and algorithms for base cases
 - Unification for term equality
 - Scope graph resolution

- Rewrite a constraints set + solution
- Simplifying and eliminating constraints
 - Constraint selecting is non-deterministic
 - Resolution order is controlled by side conditions on rewrite rules
- Rely on (other) solvers and algorithms for base cases
 - Unification for term equality
 - Scope graph resolution
- The solution is final if all constraints are eliminated

Solver = rewrite system

- Rewrite a constraints set + solution
- Simplifying and eliminating constraints
 - Constraint selecting is non-deterministic
 - Resolution order is controlled by side conditions on rewrite rules
- Rely on (other) solvers and algorithms for base cases
 - Unification for term equality
 - Scope graph resolution
- The solution is final if all constraints are eliminated

Solver = rewrite system

- Rewrite a constraints set + solution
- Simplifying and eliminating constraints
 - Constraint selecting is non-deterministic
 - Resolution order is controlled by side conditions on rewrite rules
- Rely on (other) solvers and algorithms for base cases
 - Unification for term equality
 - Scope graph resolution
- The solution is final if all constraints are eliminated

Does the order matter for the outcome?

- Confluence: the output is the same for any solving order

Solver = rewrite system

- Rewrite a constraints set + solution
- Simplifying and eliminating constraints
 - Constraint selecting is non-deterministic
 - Resolution order is controlled by side conditions on rewrite rules
- Rely on (other) solvers and algorithms for base cases
 - Unification for term equality
 - Scope graph resolution
- The solution is final if all constraints are eliminated

- Confluence: the output is the same for any solving order
- Partly true for Statix

Solver = rewrite system

- Rewrite a constraints set + solution
- Simplifying and eliminating constraints
 - Constraint selecting is non-deterministic
 - Resolution order is controlled by side conditions on rewrite rules
- Rely on (other) solvers and algorithms for base cases
 - Unification for term equality
 - Scope graph resolution
- The solution is final if all constraints are eliminated

- Confluence: the output is the same for any solving order
- Partly true for Statix
 - Up to variable and scope names

Solver = rewrite system

- Rewrite a constraints set + solution
- Simplifying and eliminating constraints
 - Constraint selecting is non-deterministic
 - Resolution order is controlled by side conditions on rewrite rules
- Rely on (other) solvers and algorithms for base cases
 - Unification for term equality
 - Scope graph resolution
- The solution is final if all constraints are eliminated

- Confluence: the output is the same for any solving order
- Partly true for Statix
 - Up to variable and scope names
 - Only if all constraints are reduced

What is the difference?

What is the difference?

- Algorithm computes a solution (= model)

What is the difference?

- Algorithm computes a solution (= model)
- Semantics describes when a constraint is satisfied by a model

What is the difference?

- Algorithm computes a solution (= model)
- Semantics describes when a constraint is satisfied by a model

What is the difference?

- Algorithm computes a solution (= model)
- Semantics describes when a constraint is satisfied by a model

How are these related?

- Soundness

What is the difference?

- Algorithm computes a solution (= model)
- Semantics describes when a constraint is satisfied by a model

- Soundness
 - ▶ If the solver returns $\langle G, \varphi \rangle$, then $G, \varphi \models C$

What is the difference?

- Algorithm computes a solution (= model)
- Semantics describes when a constraint is satisfied by a model

- Soundness
 - ▶ If the solver returns $\langle G, \phi \rangle$, then $G, \phi \models C$
- Completeness:

What is the difference?

- Algorithm computes a solution (= model)
- Semantics describes when a constraint is satisfied by a model

- Soundness
 - ▶ If the solver returns $\langle G, \phi \rangle$, then $G, \phi \models C$
- Completeness:
 - ▶ If a G and ϕ exists such that G, ϕ \models C, then the solver returns it

What is the difference?

- Algorithm computes a solution (= model)
- Semantics describes when a constraint is satisfied by a model

- Soundness
 - ▶ If the solver returns $\langle G, \phi \rangle$, then $G, \phi \models C$
- Completeness:
 - ▶ If a G and ϕ exists such that G, ϕ \models C, then the solver returns it
 - If no such G or φ exists, the solver fails

What is the difference?

- Algorithm computes a solution (= model)
- Semantics describes when a constraint is satisfied by a model

- Soundness
 - ▶ If the solver returns $\langle G, \phi \rangle$, then $G, \phi \models C$
- Completeness:
 - ▶ If a G and ϕ exists such that G, ϕ \models C, then the solver returns it
 - If no such G or φ exists, the solver fails
- Principality

What is the difference?

- Algorithm computes a solution (= model)
- Semantics describes when a constraint is satisfied by a model

- Soundness
 - ▶ If the solver returns $\langle G, \phi \rangle$, then $G, \phi \models C$
- Completeness:
 - ▶ If a G and ϕ exists such that G, ϕ \models C, then the solver returns it
 - If no such G or φ exists, the solver fails
- Principality
 - The solver finds the most general φ

Term Equality & Unification

Generic Terms

terms t, u functions f, g, h

Generic Terms

```
terms t, u functions f, g, h
```

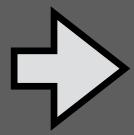
Generic Terms

terms t, u functions f, g, h

Generic Terms

terms t, u functions f, g, h

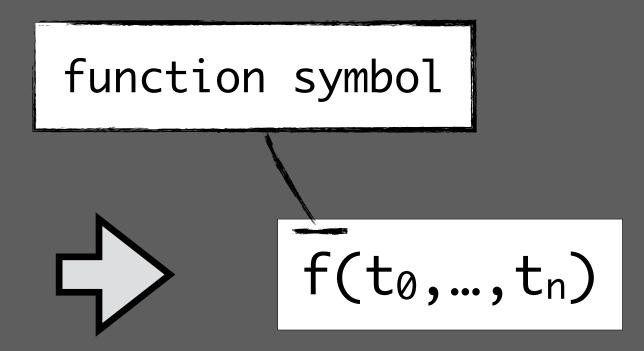
INT()
FUN(INT(),INT())



f(t0,...,tn)

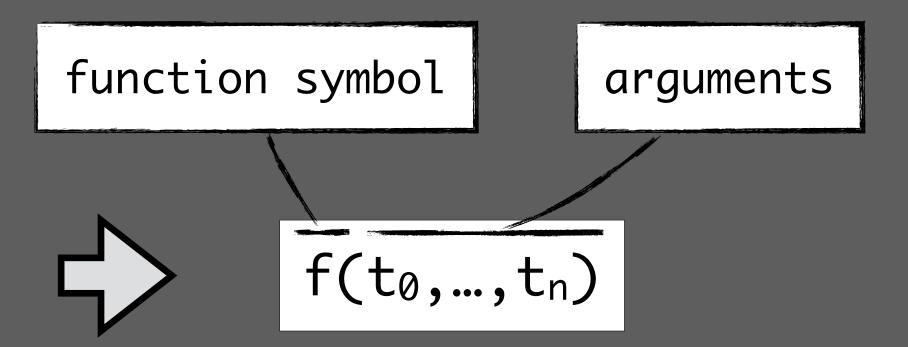
Generic Terms

terms t, u functions f, g, h



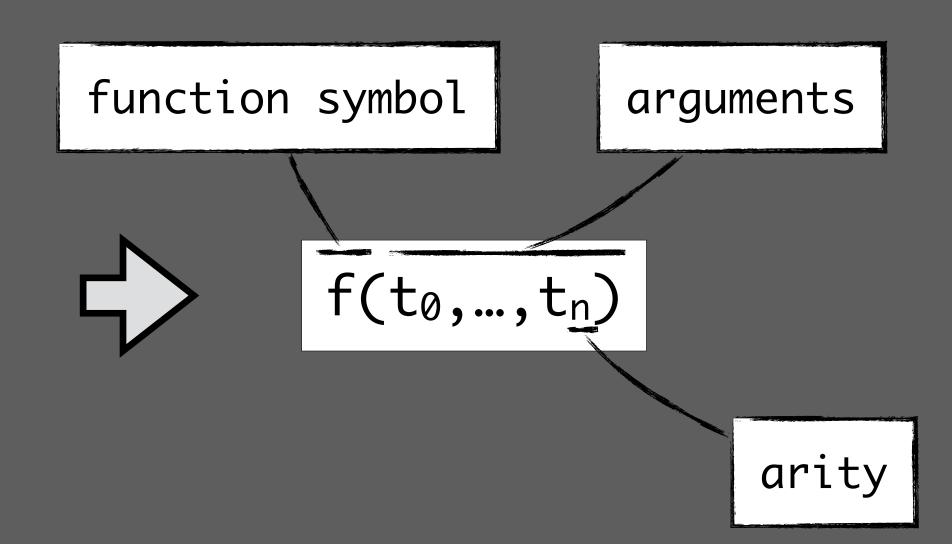
Generic Terms

terms t, u functions f, g, h



Generic Terms

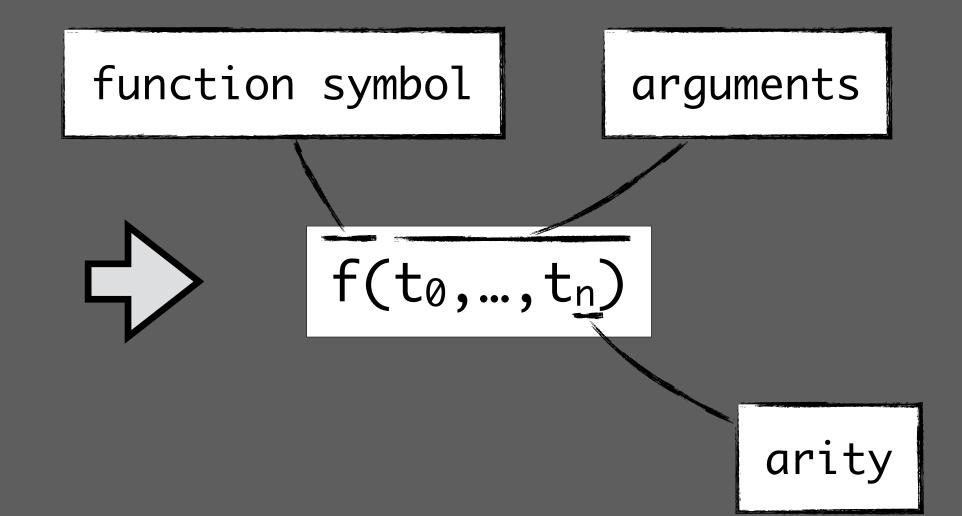
terms t, u functions f, g, h



Generic Terms

terms t, u functions f, g, h

INT()
FUN(INT(),INT())



Syntactic Equality

$$f(t_0,...,t_n) == g(u_0,...,u_m)$$
 if
 $- f = g$, and $n = m$
 $- t_i == u_i$ for every i

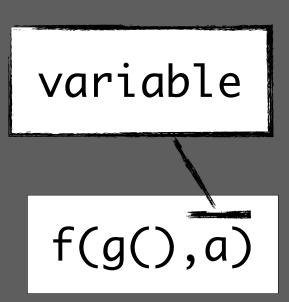
Variables and Substitution

```
terms t, u
functions f, g, h
variables a, b, c
substitution \phi
```

```
f(g(),a)
```

Variables and Substitution

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ



Variables and Substitution

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

variable

$$\phi = \{ a \rightarrow f(g(),b), b \rightarrow h() \}$$

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

variable

f(g(),a)

substitution

$$\phi = \{ a \rightarrow f(g(),b), b \rightarrow h() \}$$

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

rariable
f(g(),a)

substitution

$$\phi = \{ a \rightarrow f(g(),b), b \rightarrow h() \}$$
domain

```
variable
                         substitution
                    \phi = \{ a \rightarrow f(g(),b), b \rightarrow h() \}
f(g(),a)
                                    domain

\phi(a) = t \\
\phi(a) = a

                                                                    if { a -> t } in $\phi$
                                                                    otherwise
                    \phi(f(t_0,...,t_n)) = f(\phi(t_0),...,\phi(t_n))
```

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

```
variable
                         substitution
                    \phi = \{ a \rightarrow f(g(),b), b \rightarrow h() \}
f(g(),a)
                                    domain

\phi(a) = t \\
\phi(a) = a

                    φ(a)
                                                                   if { a -> t } in $\phi$
                                                                   otherwise
                    \phi(f(t_0,...,t_n)) = f(\phi(t_0),...,\phi(t_n))
```

f(g(),f(g(),b))

terms t, u functions f, g, h variables a, b, c substitution ϕ

```
variable
                       substitution
                  \phi = \{ a \rightarrow f(g(),b), b \rightarrow h() \}
f(g(),a)
                                 domain
                  φ(a)
                                                             if { a -> t } in $\phi$
                  \phi(a) = a
                                                             otherwise
                  \phi(f(t_0,...,t_n)) = f(\phi(t_0),...,\phi(t_n))
    f(g(), f(g(), b))
```

ground term: a term without variables

unifier: a substitution that makes terms equal

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

$$f(a,g()) == f(h(),b)$$

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

$$f(a,g()) == f(h(),b)$$

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

$$f(a,g()) == f(h(),b)$$

$$a \rightarrow h()$$

$$b \rightarrow g()$$

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

$$f(a,g()) == f(h(),b)$$

$$a \to h()$$

$$b \to g()$$

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

$$f(a,g()) == f(h(),b)$$

$$a \to h()$$

$$b \to g()$$

$$f(h(),g()) == f(h(),g())$$

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

$$f(a,g()) == f(h(),b)$$

$$a \to h()$$

$$b \to g()$$

$$f(h(),g()) == f(h(),g())$$

$$g(a,f(b)) == g(f(h()),a)$$

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

$$f(a,g()) == f(h(),b)$$

$$a \to h()$$

$$b \to g()$$

$$f(h(),g()) == f(h(),g())$$

$$g(a,f(b)) == g(f(h()),a)$$

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

$$f(a,g()) == f(h(),b)$$

$$a \to h()$$

$$b \to g()$$

$$f(h(),g()) == f(h(),g())$$

$$g(a,f(b)) == g(f(h()),a)$$

$$a \rightarrow f(h())$$

$$b \rightarrow h()$$

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

$$f(a,g()) == f(h(),b)$$

$$a \to h()$$

$$b \to g()$$

$$f(h(),g()) == f(h(),g())$$

$$g(a,f(b)) == g(f(h()),a)$$
 $\Rightarrow a -> f(h())$ $\Rightarrow b -> h()$

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

$$f(a,g()) == f(h(),b)$$

$$a \to h()$$

$$b \to g()$$

$$f(h(),g()) == f(h(),g())$$

$$g(a,f(b)) == g(f(h()),a)$$

$$a \to f(h())$$

$$b \to h()$$

$$g(f(h()),f(h())) == g(f(h()),f(h()))$$

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

$$f(a,g()) == f(h(),b)$$

$$a \to h()$$

$$b \to g()$$

$$f(h(),g()) == f(h(),g())$$

$$g(a,f(b)) == g(f(h()),a)$$

$$a \to f(h())$$

$$b \to h()$$

$$g(f(h()),f(h())) == g(f(h()),f(h()))$$

$$f(a,h()) == g(h(),b)$$

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

$$f(a,g()) == f(h(),b)$$

$$a \to h()$$

$$b \to g()$$

$$f(h(),g()) == f(h(),g())$$

$$g(a,f(b)) == g(f(h()),a)$$

$$a \to f(h())$$

$$b \to h()$$

$$g(f(h()),f(h())) == g(f(h()),f(h()))$$

$$f(a,h()) == g(h(),b)$$

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

$$f(a,g()) == f(h(),b)$$

$$a \to h()$$

$$b \to g()$$

$$f(h(),g()) == f(h(),g())$$

$$g(a,f(b)) == g(f(h()),a)$$

$$a \to f(h())$$

$$b \to h()$$

$$g(f(h()),f(h())) == g(f(h()),f(h()))$$

$$f(a,h()) == g(h(),b)$$
 no unifier, $f != g$

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

$$f(a,g()) == f(h(),b)$$

$$a \to h()$$

$$b \to g()$$

$$f(h(),g()) == f(h(),g())$$

$$g(a,f(b)) == g(f(h()),a)$$

$$a \to f(h())$$

$$b \to h()$$

$$g(f(h()),f(h())) == g(f(h()),f(h()))$$

$$f(a,h()) == g(h(),b)$$
 no unifier, $f != g$

$$f(b,b) == b$$

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

$$f(a,g()) == f(h(),b)$$

$$a \to h()$$

$$b \to g()$$

$$f(h(),g()) == f(h(),g())$$

$$g(a,f(b)) == g(f(h()),a)$$

$$a \to f(h())$$

$$b \to h()$$

$$g(f(h()),f(h())) == g(f(h()),f(h()))$$

$$f(a,h()) == g(h(),b)$$
 no unifier, $f != g$

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

$$f(a,g()) == f(h(),b)$$

$$a \to h()$$

$$b \to g()$$

$$f(h(),g()) == f(h(),g())$$

$$g(a,f(b)) == g(f(h()),a)$$

$$a \to f(h())$$

$$b \to h()$$

$$g(f(h()),f(h())) == g(f(h()),f(h()))$$

$$f(a,h()) == g(h(),b)$$
 no unifier, $f != g$

$$f(b,b) == b$$
 $b \rightarrow f(b,b)$

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

$$f(a,g()) == f(h(),b)$$

$$a \to h()$$

$$b \to g()$$

$$f(h(),g()) == f(h(),g())$$

$$g(a,f(b)) == g(f(h()),a)$$

$$a \to f(h())$$

$$b \to h()$$

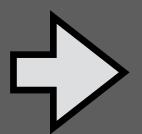
$$g(f(h()),f(h())) == g(f(h()),f(h()))$$

$$f(a,h()) == g(h(),b)$$
 no unifier, $f != g$

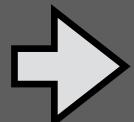
$$f(b,b) == b$$
 $b \rightarrow f(b,b)$ not idempotent

terms f, g, h a, b, c functions variables substitution φ

$$f(a,b) == f(b,c)$$

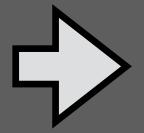


terms f, g, h a, b, c functions variables substitution φ



t, u terms f, g, h functions a, b, c variables substitution φ

$$f(a,b) == f(b,c)$$

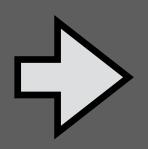


$$a \rightarrow b$$
 $c \rightarrow b$
 $f(b,b) == f(b,b)$

$$f(a,b) == f(b,c)$$



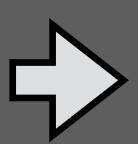
$$f(b,b) == f(b,b)$$



$$f(g(),g()) == f(g(),g())$$

$$f(a,b) == f(b,c)$$

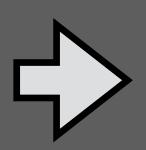
$$f(b,b) == f(b,b)$$



$$f(g(),g()) == f(g(),g())$$

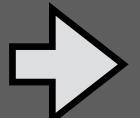
$$f(a,b) == f(b,c)$$

$$f(b,b) == f(b,b)$$



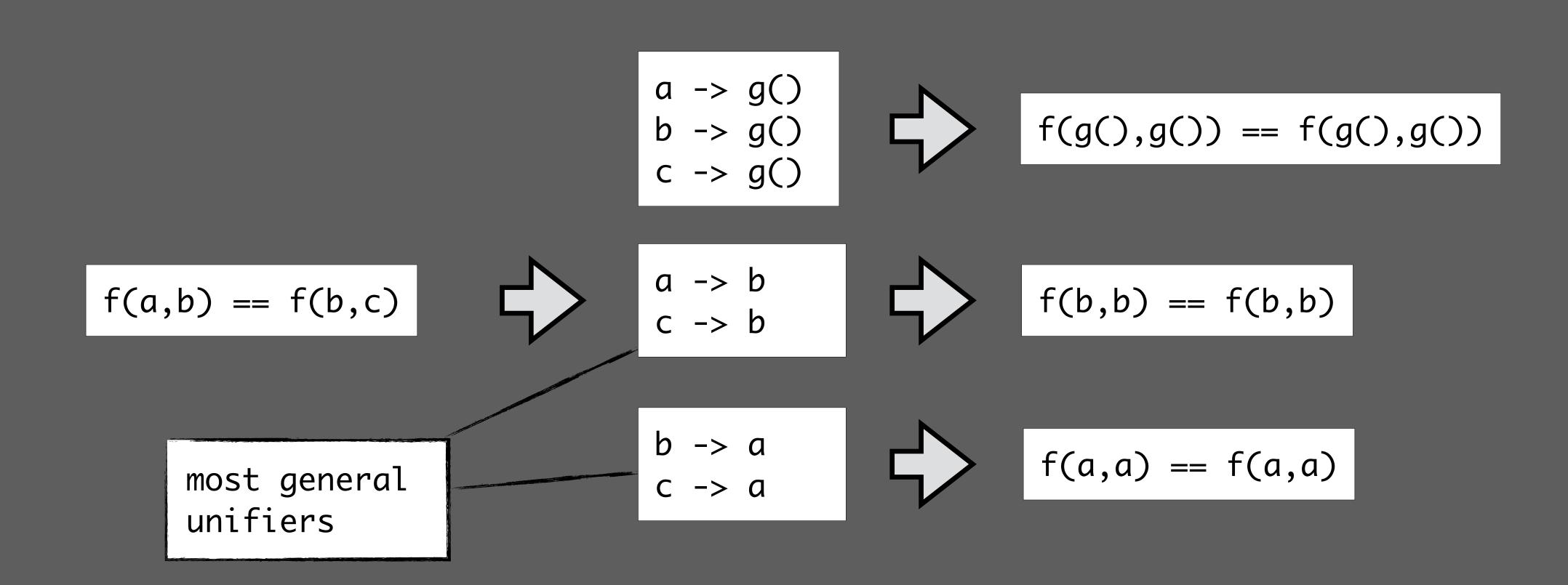
$$f(g(),g()) == f(g(),g())$$

$$f(a,b) == f(b,c)$$



$$f(b,b) == f(b,b)$$

$$f(a,a) == f(a,a)$$



terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

every unifier is an instance of a most general unifier

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

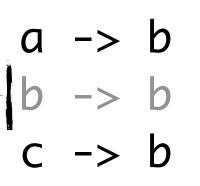
every unifier is an instance of a most general unifier

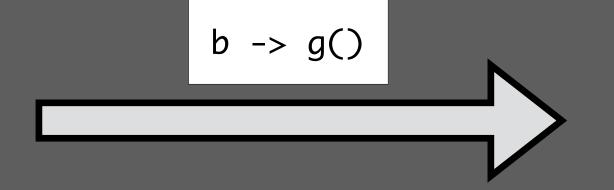
(implicit) identity case

terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

every unifier is an instance of a most general unifier

(implicit) identity case

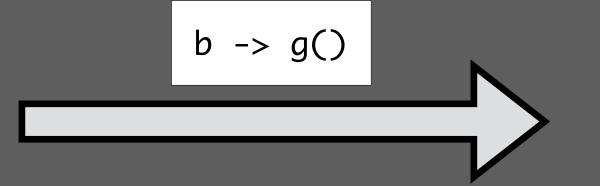




terms t, u
functions f, g, h
variables a, b, c
substitution ϕ

every unifier is an instance of a most general unifier

(implicit) identity case



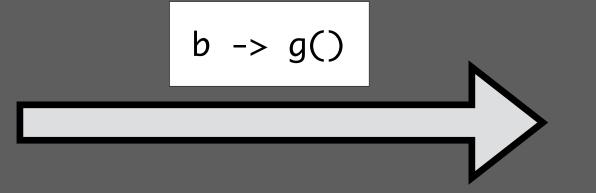
most general unifiers are related by renaming substitutions

Most General Unifiers

terms t, u functions f, g, h variables a, b, c substitution φ

every unifier is an instance of a most general unifier

(implicit) identity case



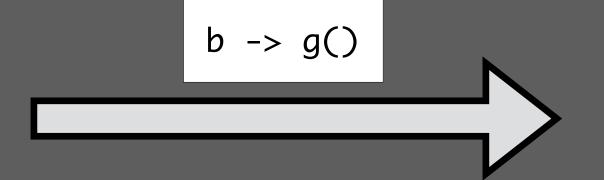
most general unifiers are related by renaming substitutions

Most General Unifiers

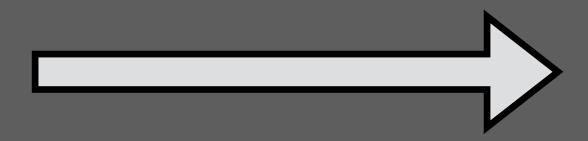
terms t, u functions f, g, h variables a, b, c substitution ϕ

every unifier is an instance of a most general unifier

(implicit) identity case



most general unifiers are related by renaming substitutions

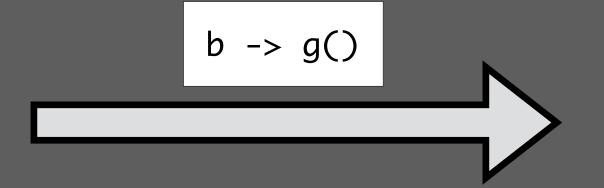


Most General Unifiers

terms t, u functions f, g, h variables a, b, c substitution ϕ

every unifier is an instance of a most general unifier

(implicit) identity case



most general unifiers are related by renaming substitutions

```
global \phi
def unify(t, u):
  if t is a variable:
    t := \phi(t)
  if u is a variable:
    u := \phi(u)
  if t is a variable and t == u:
    pass
  else if t == f(t_0, ..., t_n) and u == g(u_0, ..., u_m):
    if f == g and n == m:
       for i := 1 to n:
         unify(t<sub>i</sub>, u<sub>i</sub>)
    else:
       fail "different function symbols"
  else if t is not a variable:
    unify(u, t)
  else if t occurs in u:
    fail "recursive term"
  else:
    \phi += \{ t -> u \}
```

```
global ø
def unify(t, u):
  if t is a variable:
    t := \phi(t)
  if u is a variable:
    u := \phi(u)
  if t is a variable and t == u:
    pass
  else if t == f(t_0, ..., t_n) and u == g(u_0, ..., u_m):
    if f == g and n == m:
      for i := 1 to n:
         unify(t<sub>i</sub>, u<sub>i</sub>)
    else:
       fail "different function symbols"
  else if t is not a variable:
    unify(u, t)
  else if t occurs in u:
    fail "recursive term"
  else:
    \phi += \{ t -> u \}
```

```
terms t, u
functions f, g, h
variables a, b, c
substitution \phi
```

```
global ø
def unify(t, u):
  if t is a variable:
                                                          T t == a
    t := \phi(t)
                                                          instantiate variable
  if u is a variable:
                                                          Tu == b
                                                          instantiate variable
    u := \phi(u)
  if t is a variable and t == u:
    pass
  else if t == f(t_0, ..., t_n) and u == g(u_0, ..., u_m):
    if f == g and n == m:
       for i := 1 to n:
         unify(t<sub>i</sub>, u<sub>i</sub>)
    else:
       fail "different function symbols"
  else if t is not a variable:
    unify(u, t)
  else if t occurs in u:
    fail "recursive term"
  else:
    \phi += \{ t -> u \}
```

```
terms t, u
functions f, g, h
variables a, b, c
substitution \phi
```

```
global ø
def unify(t, u):
  if t is a variable:
                                                          T t == a
    t := \phi(t)
                                                          instantiate variable
  if u is a variable:
                                                          T u == b
                                                          instantiate variable
    u := \phi(u)
                                                           b == b
  if t is a variable and t == u:
                                                          L equal variables
    pass
  else if t == f(t_0, ..., t_n) and u == g(u_0, ..., u_m):
    if f == g and n == m:
       for i := 1 to n:
         unify(t<sub>i</sub>, u<sub>i</sub>)
    else:
       fail "different function symbols"
  else if t is not a variable:
    unify(u, t)
  else if t occurs in u:
    fail "recursive term"
  else:
    \phi += \{ t -> u \}
```

```
global ø
def unify(t, u):
  if t is a variable:
     t := \phi(t)
                                                              instantiate variable
  if u is a variable:
                                                              T'u == b
                                                              instantiate variable
    u := \phi(u)
  if t is a variable and t == u:
                                                              l equal variables
     pass
  else if t == f(t_0, ..., t_n) and u == g(u_0, ..., u_m):
                                                               t == f(t_0,...,t_5), u == f(u_0,...,u_5)
matching terms
     if f == g and n == m:
       for i := 1 to n:
          unify(t<sub>i</sub>, u<sub>i</sub>)
     else:
       fail "different function symbols"
  else if t is not a variable:
     unify(u, t)
  else if t occurs in u:
     fail "recursive term"
  else:
     \phi += \{ t -> u \}
```

```
global ф
def unify(t, u):
  if t is a variable:
     t := \phi(t)
                                                                instantiate variable
  if u is a variable:
                                                                Tu == b
                                                                1 instantiate variable
    u := \phi(u)
  if t is a variable and t == u:
                                                               L equal variables
     pass
  else if t == f(t_0, ..., t_n) and u == g(u_0, ..., u_m):
                                                                 t == f(t_0,...,t_5), u == f(u_0,...,u_5)
matching terms
     if f == g and n == m:
       for i := 1 to n:
          unify(t<sub>i</sub>, u<sub>i</sub>)
                                                               t == f(t_0,...,t_5), u == g(u_0,...,u_3)
     else:
                                                                 mismatching terms
        fail "different function symbols"
  else if t is not a variable:
     unify(u, t)
  else if t occurs in u:
     fail "recursive term"
  else:
     \phi += \{ t -> u \}
```

t, u

f, g, h

a, b, c

```
global \phi
                                                                                                  terms
def unify(t, u):
                                                                                                  functions
                                                                                                  variables
  if t is a variable:
                                                                                                  substitution \phi
     t := \phi(t)
                                                                  instantiate variable
  if u is a variable:
                                                                  Tu == b
                                                                  1 instantiate variable
    u := \phi(u)
  if t is a variable and t == u:
                                                                  L equal variables
     pass
  else if t == f(t_0, ..., t_n) and u == g(u_0, ..., u_m):
                                                                    t == f(t_0,...,t_5), u == f(u_0,...,u_5)
matching terms
     if f == g and n == m:
        for i := 1 to n:
          unify(t<sub>i</sub>, u<sub>i</sub>)
                                                                  T t == f(t_0,...,t_5), u == g(u_0,...,u_3)
     else:
                                                                  ___ mismatching terms
        fail "different function symbols"
                                                                   t == f(t_0,...,t_5), u == b
  else if t is not a variable:
                                                                    swap terms
     unify(u, t)
  else if t occurs in u:
     fail "recursive term"
  else:
```

 $\phi += \{ t -> u \}$

```
global \phi
def unify(t, u):
  if t is a variable:
     t := \phi(t)
                                                                 instantiate variable
  if u is a variable:
                                                                 Tu == b
                                                                 1 instantiate variable
     u := \phi(u)
  if t is a variable and t == u:
                                                                 L equal variables
     pass
  else if t == f(t_0, ..., t_n) and u == g(u_0, ..., u_m):
                                                                   t == f(t_0,...,t_5), u == f(u_0,...,u_5)
matching terms
     if f == g and n == m:
        for i := 1 to n:
          unify(t<sub>i</sub>, u<sub>i</sub>)
                                                                 t == f(t_0,...,t_5), u == g(u_0,...,u_3)
     else:
                                                                 ___ mismatching terms
        fail "different function symbols"
                                                                  t == f(t_0,...,t_5), u == b
  else if t is not a variable:
                                                                 I swap terms
     unify(u, t)
                                                                 T t == a, u == k(g(a,f()))
  else if t occurs in u:
                                                                 I recursive terms
     fail "recursive term"
  else:
     \phi += { t -> u }
```

```
global \phi
def unify(t, u):
  if t is a variable:
     t := \phi(t)
                                                                  instantiate variable
  if u is a variable:
                                                                  Tu == b
                                                                  1 instantiate variable
     u := \phi(u)
  if t is a variable and t == u:
                                                                  L equal variables
     pass
  else if t == f(t_0, ..., t_n) and u == g(u_0, ..., u_m):
                                                                    t == f(t_0,...,t_5), u == f(u_0,...,u_5)
matching terms
     if f == g and n == m:
        for i := 1 to n:
          unify(t<sub>i</sub>, u<sub>i</sub>)
                                                                  t == f(t_0,...,t_5), u == g(u_0,...,u_3)
     else:
                                                                  ___ mismatching terms
        fail "different function symbols"
                                                                   t == f(t_0,...,t_5), u == b
  else if t is not a variable:
                                                                   _ swap terms
     unify(u, t)
                                                                  T t == a, u == k(g(a,f()))
  else if t occurs in u:
                                                                  I recursive terms
     fail "recursive term"
                                                                  T t == a, u == k(u_0,...,u_5)
  else:
                                                                  L extend unifier
     \phi += { t -> u }
```

Soundness

Soundness

- If the algorithm returns a unifier, it makes the terms equal

Soundness

- If the algorithm returns a unifier, it makes the terms equal

Completeness

Soundness

- If the algorithm returns a unifier, it makes the terms equal

Completeness

- If a unifier exists, the algorithm will return it

Soundness

- If the algorithm returns a unifier, it makes the terms equal

Completeness

- If a unifier exists, the algorithm will return it

Principality

Soundness

- If the algorithm returns a unifier, it makes the terms equal

Completeness

- If a unifier exists, the algorithm will return it

Principality

- If the algorithm returns a unifier, it is a most general unifier

Soundness

- If the algorithm returns a unifier, it makes the terms equal

Completeness

- If a unifier exists, the algorithm will return it

Principality

- If the algorithm returns a unifier, it is a most general unifier

Termination

Soundness

- If the algorithm returns a unifier, it makes the terms equal

Completeness

- If a unifier exists, the algorithm will return it

Principality

- If the algorithm returns a unifier, it is a most general unifier

Termination

- The algorithm always returns a unifier or fails

Efficient Unification with Union-Find

```
terms t, u
functions f, g, h
variables a, b, c
substitution \phi
```

```
h(a_1, ..., a_n), f(b_0, b_0), ..., f(b_{n-1}, b_{n-1}), a_n) == h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)
```



```
terms t, u
functions f, g, h
variables a, b, c
substitution \phi
```

```
h(a_1, ..., a_n), f(b_0, b_0), ..., f(b_{n-1}, b_{n-1}), a_n) == h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)
```



```
a_1 \rightarrow f(a_0, a_0)

a_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))

a_i \rightarrow ... 2^{i+1}-1 subterms ...

b_1 \rightarrow f(a_0, a_0)

b_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))

b_i \rightarrow ... 2^{i+1}-1 subterms ...
```

Space complexity

```
terms t, u
functions f, g, h
variables a, b, c
substitution \phi
```

```
h(a_1, ..., a_n), f(b_0, b_0), ..., f(b_{n-1}, b_{n-1}), a_n) == h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)
```



```
a_1 \rightarrow f(a_0, a_0)

a_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))

a_i \rightarrow ... 2^{i+1}-1 subterms ...

b_1 \rightarrow f(a_0, a_0)

b_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))

b_i \rightarrow ... 2^{i+1}-1 subterms ...
```

Space complexity

- Exponential

```
terms t, u
functions f, g, h
variables a, b, c
substitution \phi
```

```
h(a_1, ..., a_n), f(b_0, b_0), ..., f(b_{n-1}, b_{n-1}), a_n) == h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)
```



```
a_1 \rightarrow f(a_0, a_0)

a_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))

a_i \rightarrow ... 2^{i+1}-1 subterms ...

b_1 \rightarrow f(a_0, a_0)

b_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))

b_i \rightarrow ... 2^{i+1}-1 subterms ...
```

Space complexity

- Exponential
- Representation of unifier

```
terms t, u
functions f, g, h
variables a, b, c
substitution \phi
```

```
h(a_1, ..., a_n), f(b_0, b_0), ..., f(b_{n-1}, b_{n-1}), a_n) == h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_{n-1}, b_n)
```



```
a_1 \rightarrow f(a_0, a_0)

a_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))

a_i \rightarrow ... 2^{i+1}-1 subterms ...

b_1 \rightarrow f(a_0, a_0)

b_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))

b_i \rightarrow ... 2^{i+1}-1 subterms ...
```

Space complexity

- Exponential
- Representation of unifier

```
terms t, u
functions f, g, h
variables a, b, c
substitution \phi
```

```
h(a_1, ..., a_n), f(b_0, b_0), ..., f(b_{n-1}, b_{n-1}), a_n) = h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_{n-1}, b_n)
```



```
a_1 \rightarrow f(a_0, a_0)

a_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))

a_i \rightarrow ... 2^{i+1}-1 subterms ...

b_1 \rightarrow f(a_0, a_0)

b_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))

b_i \rightarrow ... 2^{i+1}-1 subterms ...
```

fully applied

Space complexity

- Exponential
- Representation of unifier

```
terms t, u
functions f, g, h
variables a, b, c
substitution \phi
```

```
h(a_1, ..., a_n), f(b_0, b_0), ..., f(b_{n-1}, b_{n-1}), a_n) = h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_{n-1}, b_n)
```



```
a_1 \rightarrow f(a_0, a_0)

a_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))

a_i \rightarrow ... 2^{i+1}-1 subterms ...

b_1 \rightarrow f(a_0, a_0)

b_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))

b_i \rightarrow ... 2^{i+1}-1 subterms ...
```

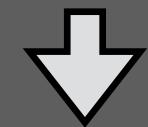
fully applied

Space complexity

- Exponential
- Representation of unifier

```
terms t, u
functions f, g, h
variables a, b, c
substitution \phi
```

$$h(a_1, a_n)$$
, $h(b_0, b_0)$, $h(b_{n-1}, b_{n-1})$, $h(b_{n-1}, a_{n-1})$, $h(b_0, b_0)$, $h(b$



$$a_1 \rightarrow f(a_0, a_0)$$

 $a_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))$
 $a_i \rightarrow ... 2^{i+1}-1$ subterms ...
 $b_1 \rightarrow f(a_0, a_0)$
 $b_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))$
 $b_i \rightarrow ... 2^{i+1}-1$ subterms ...

fully applied

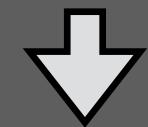
Space complexity

- Exponential
- Representation of unifier

Time complexity

```
terms t, u
functions f, g, h
variables a, b, c
substitution \phi
```

$$h(a_1, a_n)$$
, $h(b_0, b_0)$, $h(b_{n-1}, b_{n-1})$, $h(b_{n-1}, a_{n-1})$, $h(b_{n-1}, a_{n-1})$, $h(b_0, b_0)$, $h(b_0, b_0$



$$a_1 \rightarrow f(a_0, a_0)$$

 $a_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))$
 $a_i \rightarrow ... 2^{i+1}-1$ subterms ...
 $b_1 \rightarrow f(a_0, a_0)$
 $b_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))$
 $b_i \rightarrow ... 2^{i+1}-1$ subterms ...

fully applied

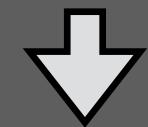
Space complexity

- Exponential
- Representation of unifier

Time complexity

Exponential

```
terms t, u
functions f, g, h
variables a, b, c
substitution \phi
```

$$a_1 \rightarrow f(a_0, a_0)$$

 $a_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))$
 $a_i \rightarrow ... 2^{i+1}-1$ subterms ...
 $b_1 \rightarrow f(a_0, a_0)$
 $b_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))$
 $b_i \rightarrow ... 2^{i+1}-1$ subterms ...

fully applied

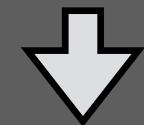
Space complexity

- Exponential
- Representation of unifier

Time complexity

- Exponential
- Recursive calls on terms

```
terms t, u
functions f, g, h
variables a, b, c
substitution \phi
```

$$a_1 \rightarrow f(a_0, a_0)$$

 $a_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))$
 $a_i \rightarrow ... 2^{i+1}-1$ subterms ...
 $b_1 \rightarrow f(a_0, a_0)$
 $b_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))$
 $b_i \rightarrow ... 2^{i+1}-1$ subterms ...

fully applied

Space complexity

- Exponential
- Representation of unifier

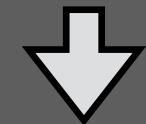
Time complexity

- Exponential
- Recursive calls on terms

Solution

```
terms t, u
functions f, g, h
variables a, b, c
substitution \phi
```

$$h(a_1, a_n)$$
, $h(b_0, b_0)$, $h(b_{n-1}, b_{n-1})$, $h(b_{n-1}, a_{n-1})$, $h(b_0, b_0)$, $h(b$



$$a_1 \rightarrow f(a_0, a_0)$$

 $a_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))$
 $a_i \rightarrow ... 2^{i+1}-1$ subterms ...
 $b_1 \rightarrow f(a_0, a_0)$
 $b_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))$
 $b_i \rightarrow ... 2^{i+1}-1$ subterms ...

$$a_1 \rightarrow f(a_0, a_0)$$
 $a_2 \rightarrow f(a_1, a_1)$
 $a_i \rightarrow ... 3 \text{ subterms } ...$
 $b_1 \rightarrow f(a_0, a_0)$
 $b_2 \rightarrow f(a_1, a_1)$
 $b_i \rightarrow ... 3 \text{ subterms } ...$

fully applied

Space complexity

- Exponential
- Representation of unifier

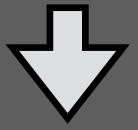
Time complexity

- Exponential
- Recursive calls on terms

Solution

- Union-Find algorithm

```
terms t, u
functions f, g, h
variables a, b, c
substitution \phi
```



$$a_1 \rightarrow f(a_0, a_0)$$

 $a_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))$
 $a_i \rightarrow ... 2^{i+1}-1$ subterms ...
 $b_1 \rightarrow f(a_0, a_0)$
 $b_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))$
 $b_i \rightarrow ... 2^{i+1}-1$ subterms ...

$$a_1 \rightarrow f(a_0, a_0)$$
 $a_2 \rightarrow f(a_1, a_1)$
 $a_i \rightarrow ... 3 \text{ subterms } ...$
 $b_1 \rightarrow f(a_0, a_0)$
 $b_2 \rightarrow f(a_1, a_1)$
 $b_i \rightarrow ... 3 \text{ subterms } ...$

fully applied

Space complexity

- Exponential
- Representation of unifier

Time complexity

- Exponential
- Recursive calls on terms

Solution

- Union-Find algorithm
- Complexity growth can be considered constant

```
terms t, u
functions f, g, h
variables a, b, c
substitution \phi
```




```
a_1 \rightarrow f(a_0, a_0)

a_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))

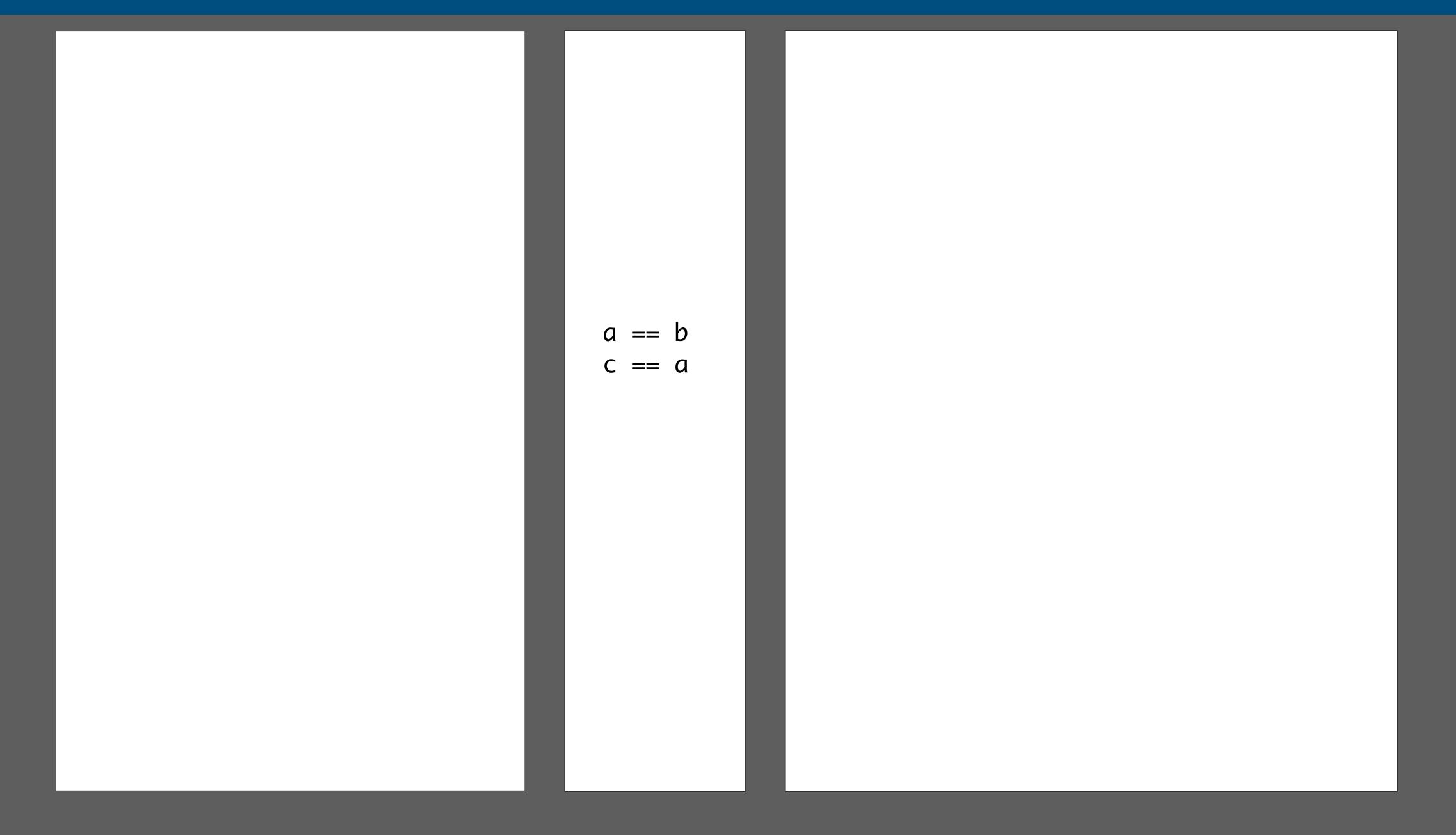
a_i \rightarrow ... 2^{i+1}-1 subterms ...

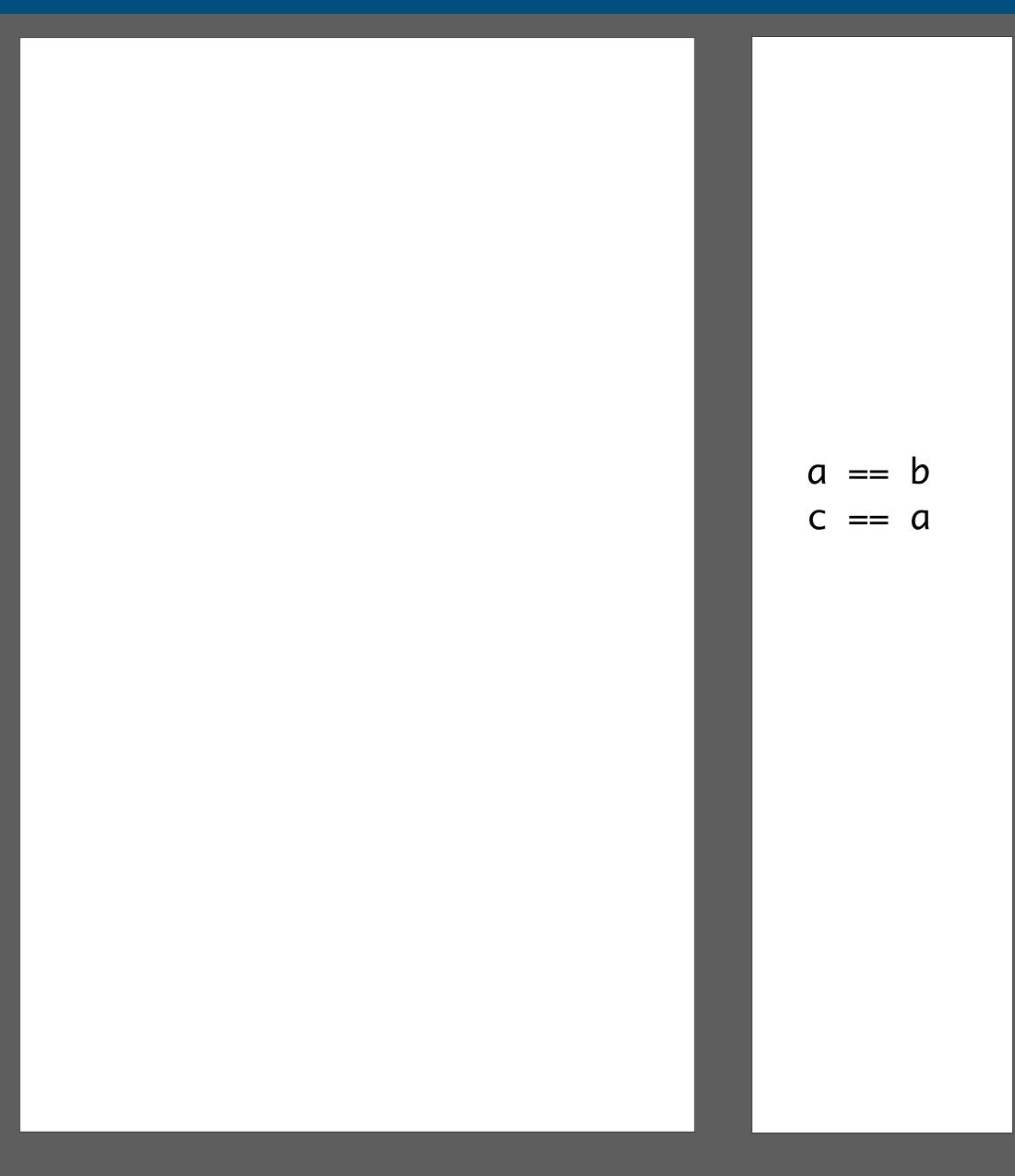
b_1 \rightarrow f(a_0, a_0)

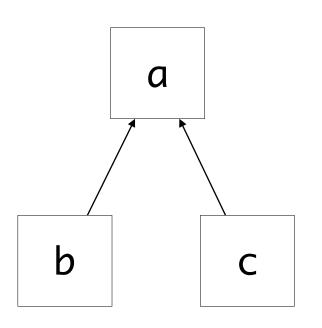
b_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))

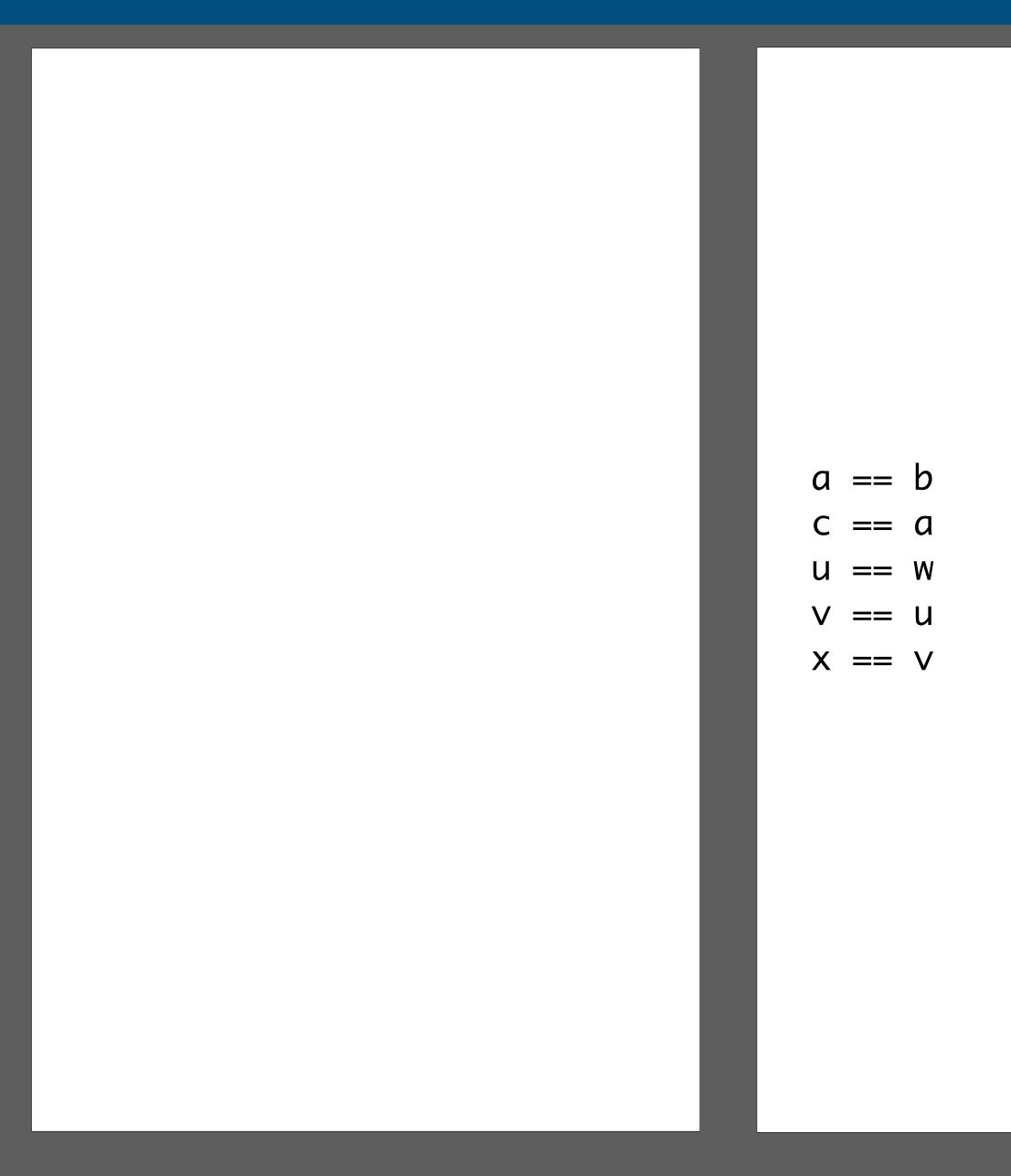
b_i \rightarrow ... 2^{i+1}-1 subterms ...
```

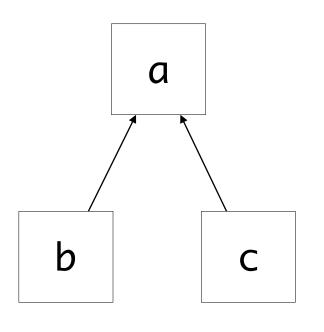
fully applied

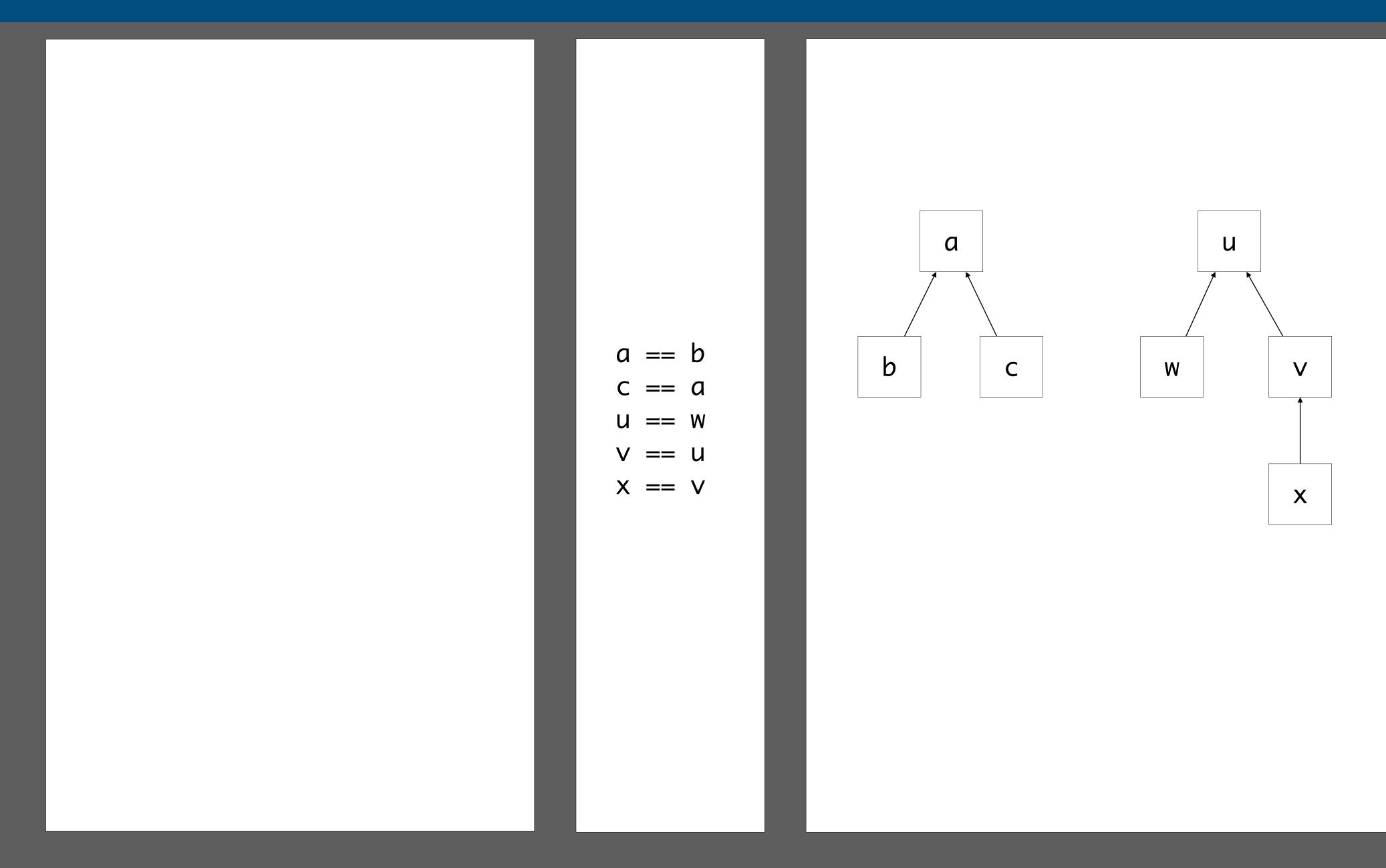


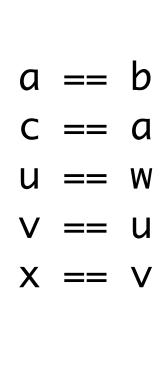


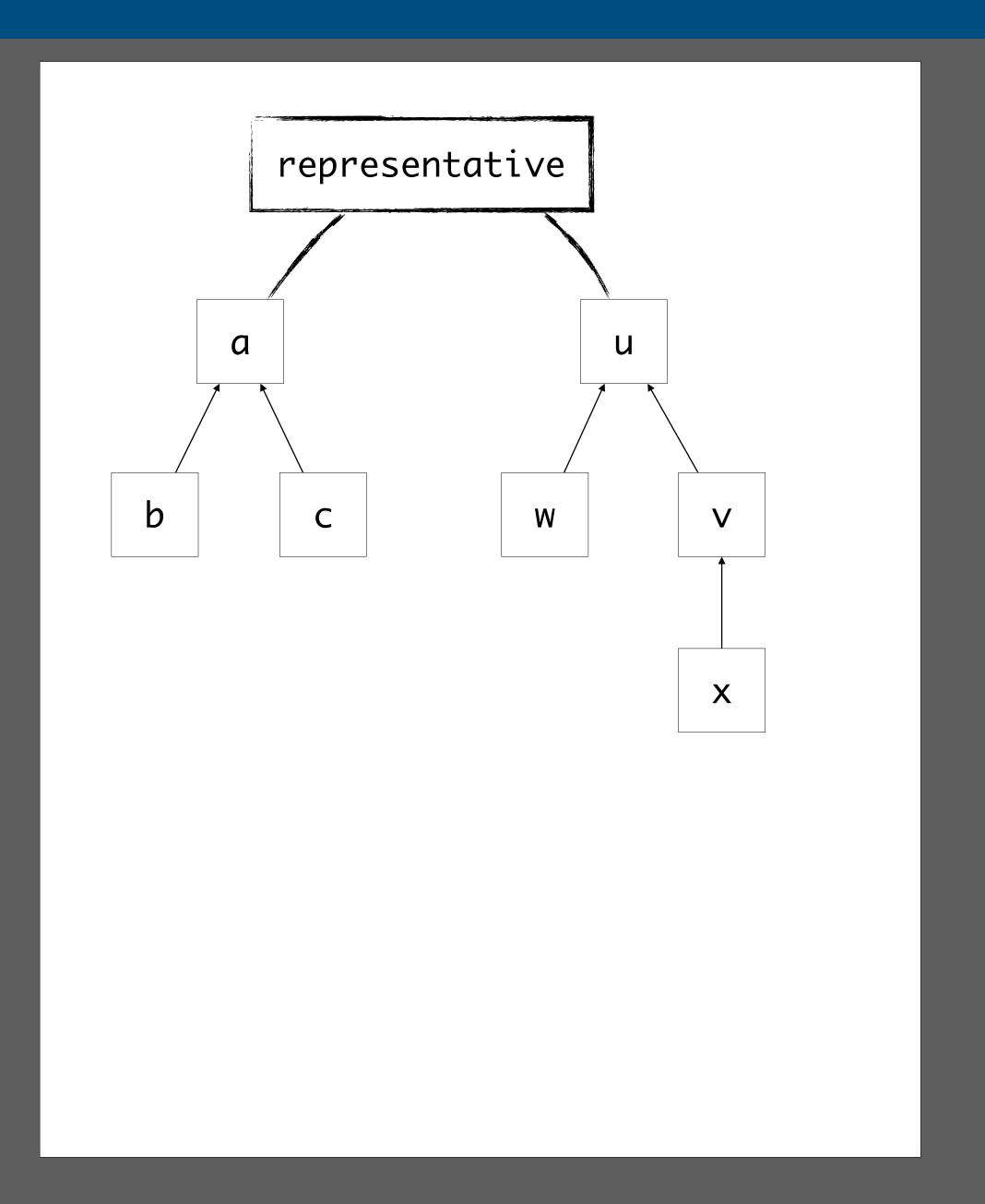


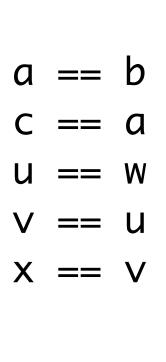


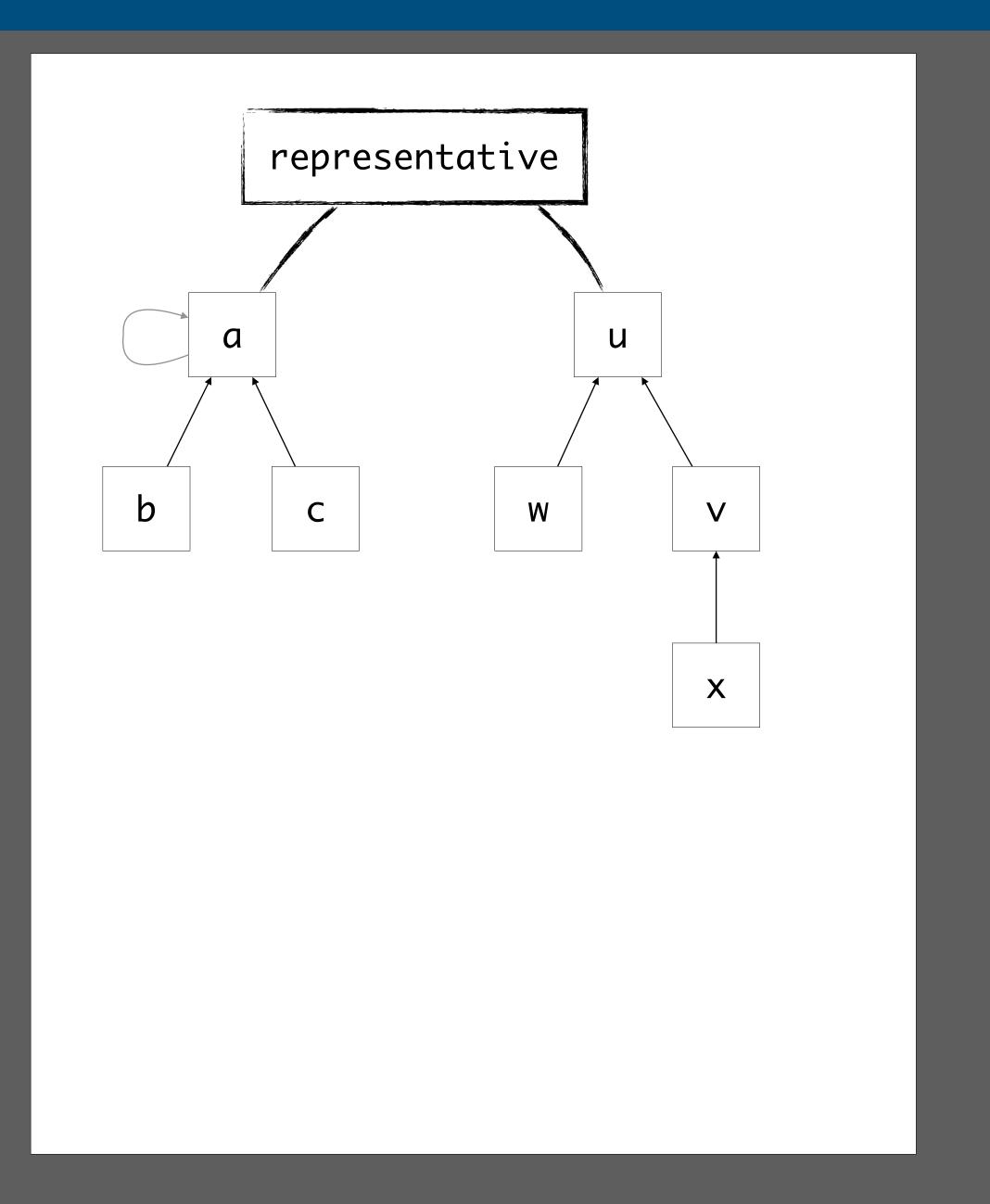


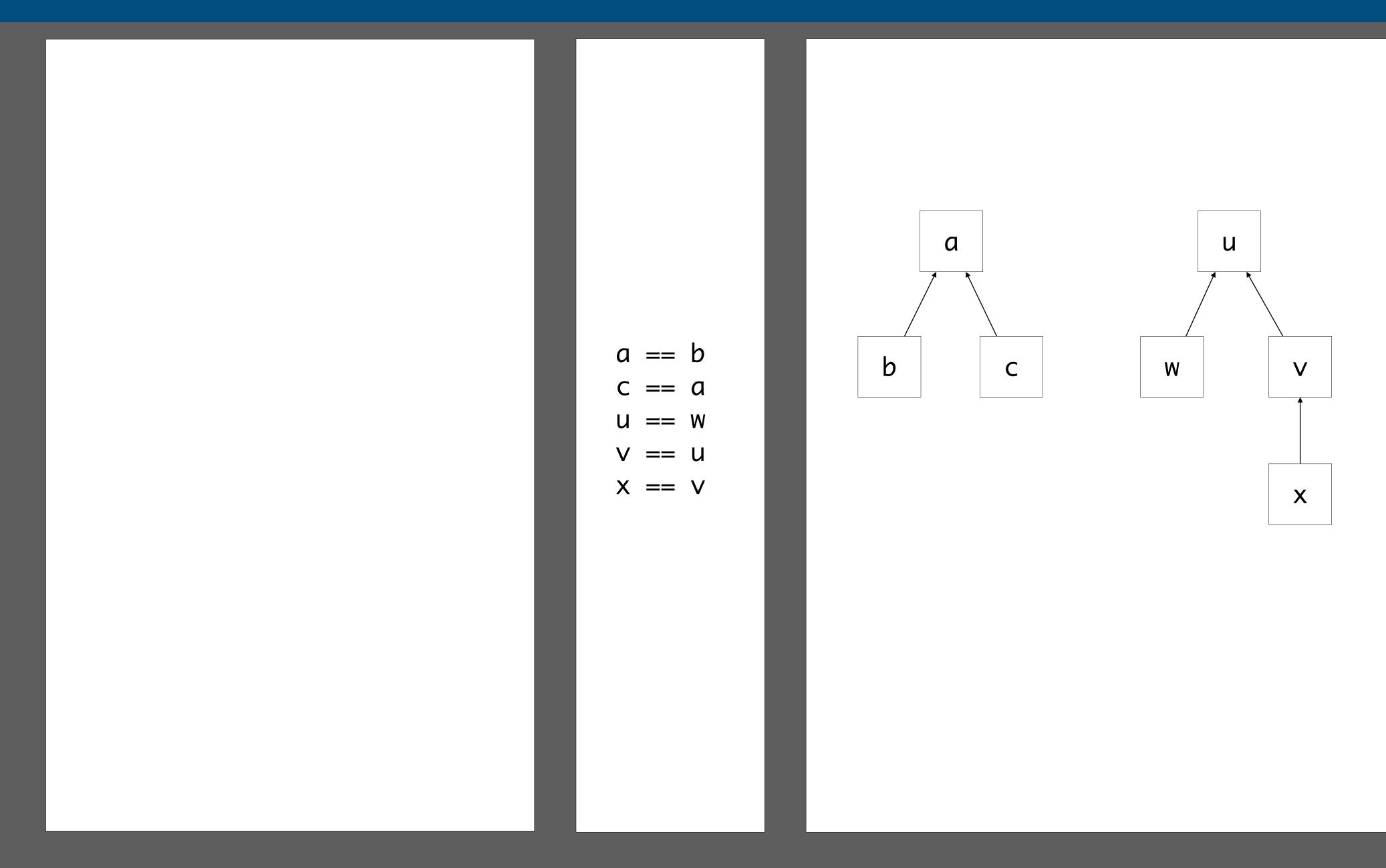


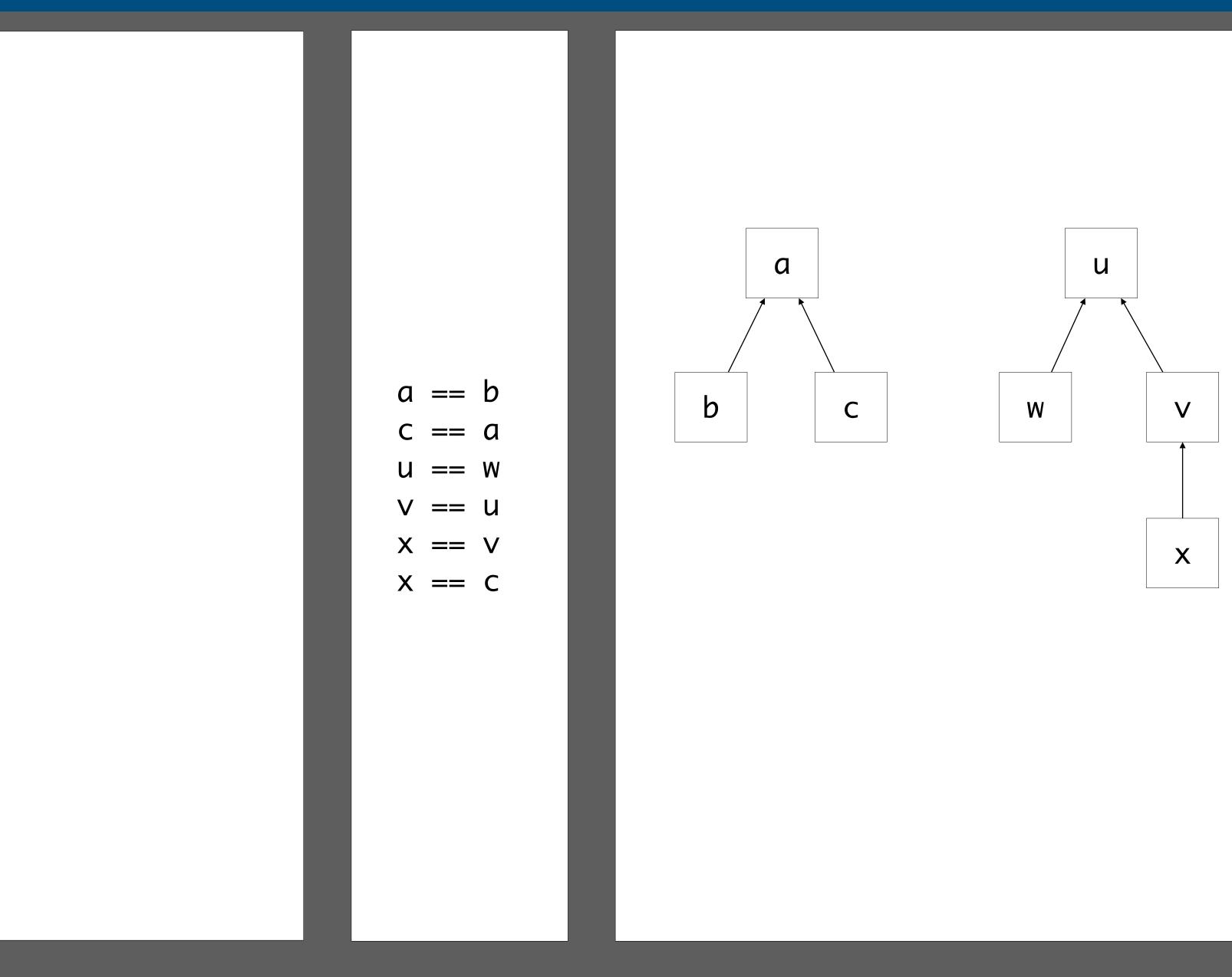


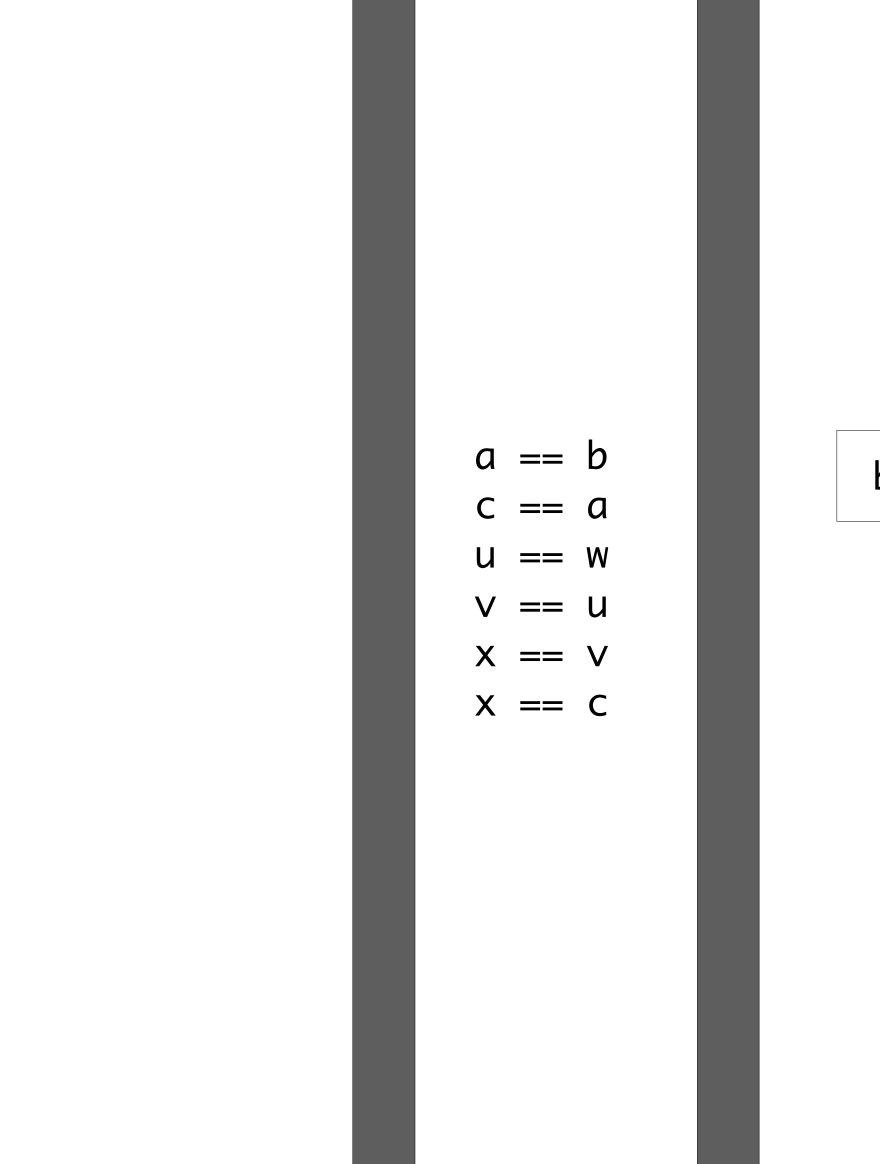


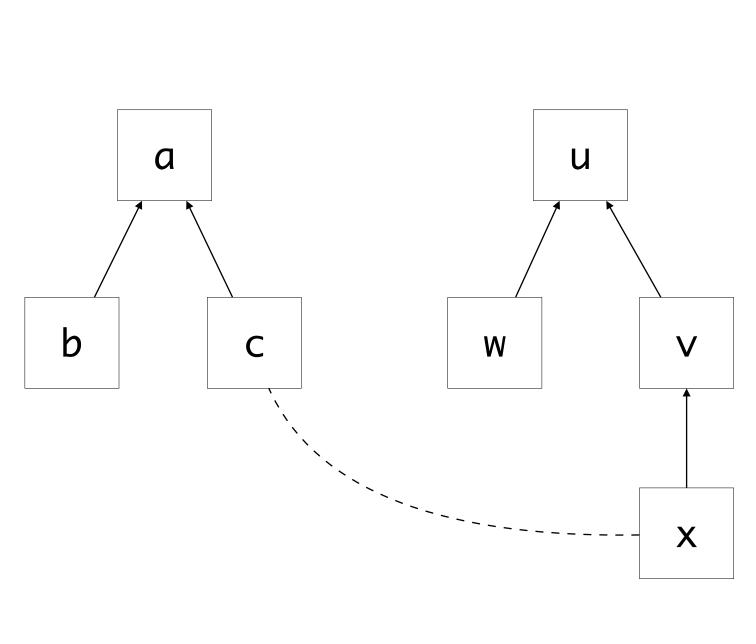






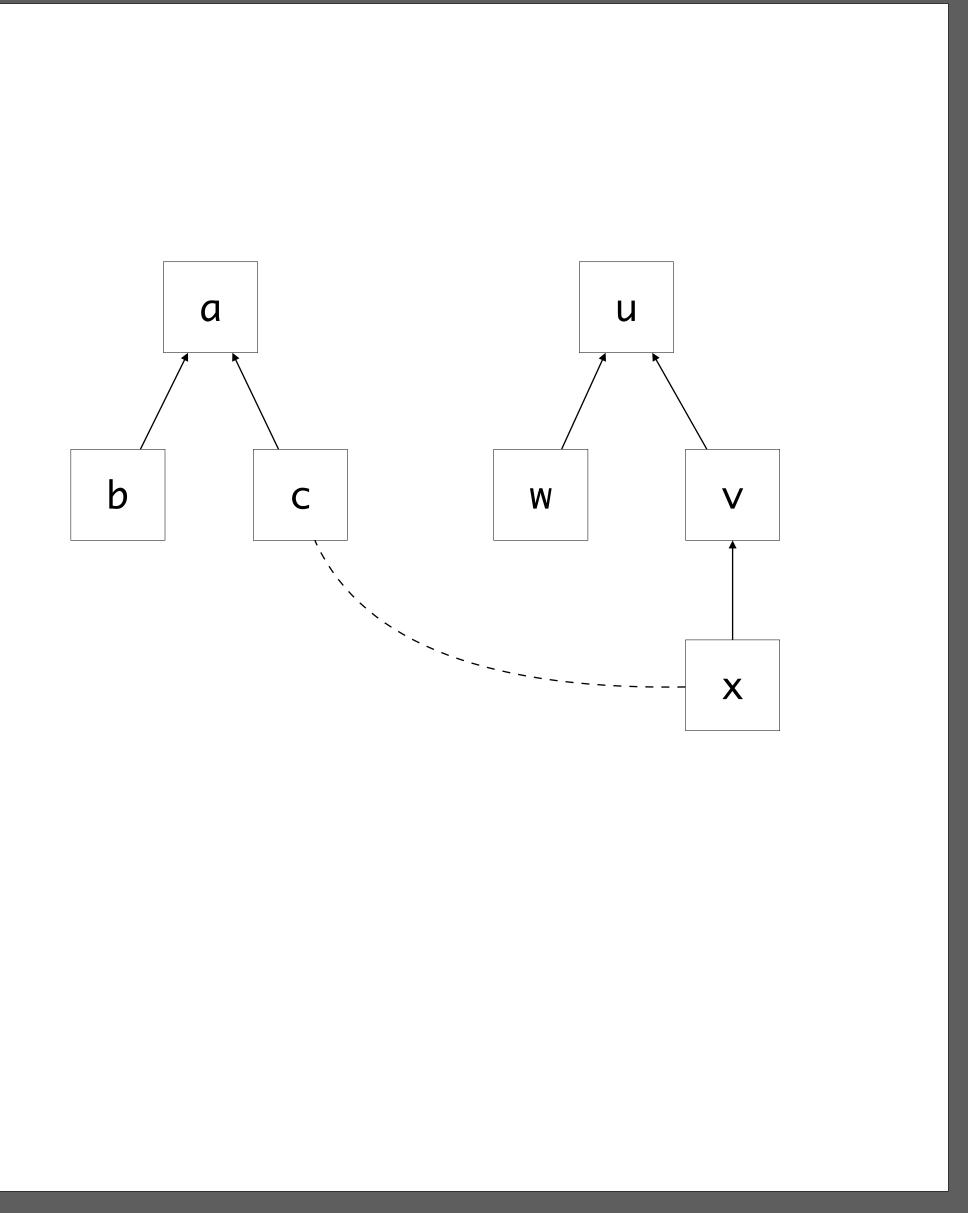




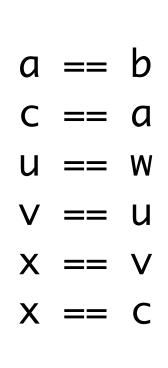


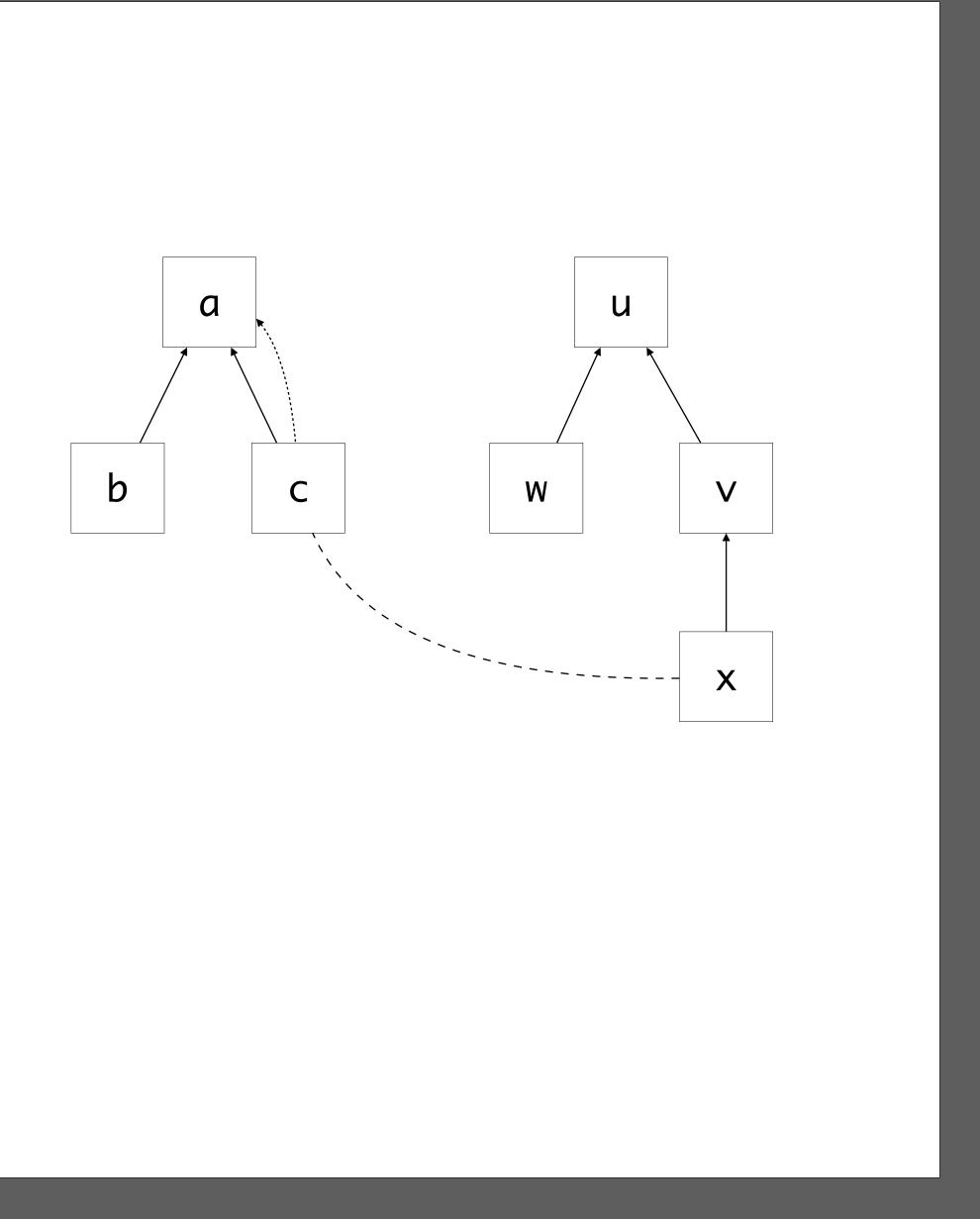
```
FIND(a):
  b := rep(a)
  if b == a:
     return a
  else
     return FIND(b)
UNION(a1,a2):
 b1 := FIND(a1)
 b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
 rep(a1) := a2
```

```
a == b
c == a
u == w
v == u
x == v
x == c
```



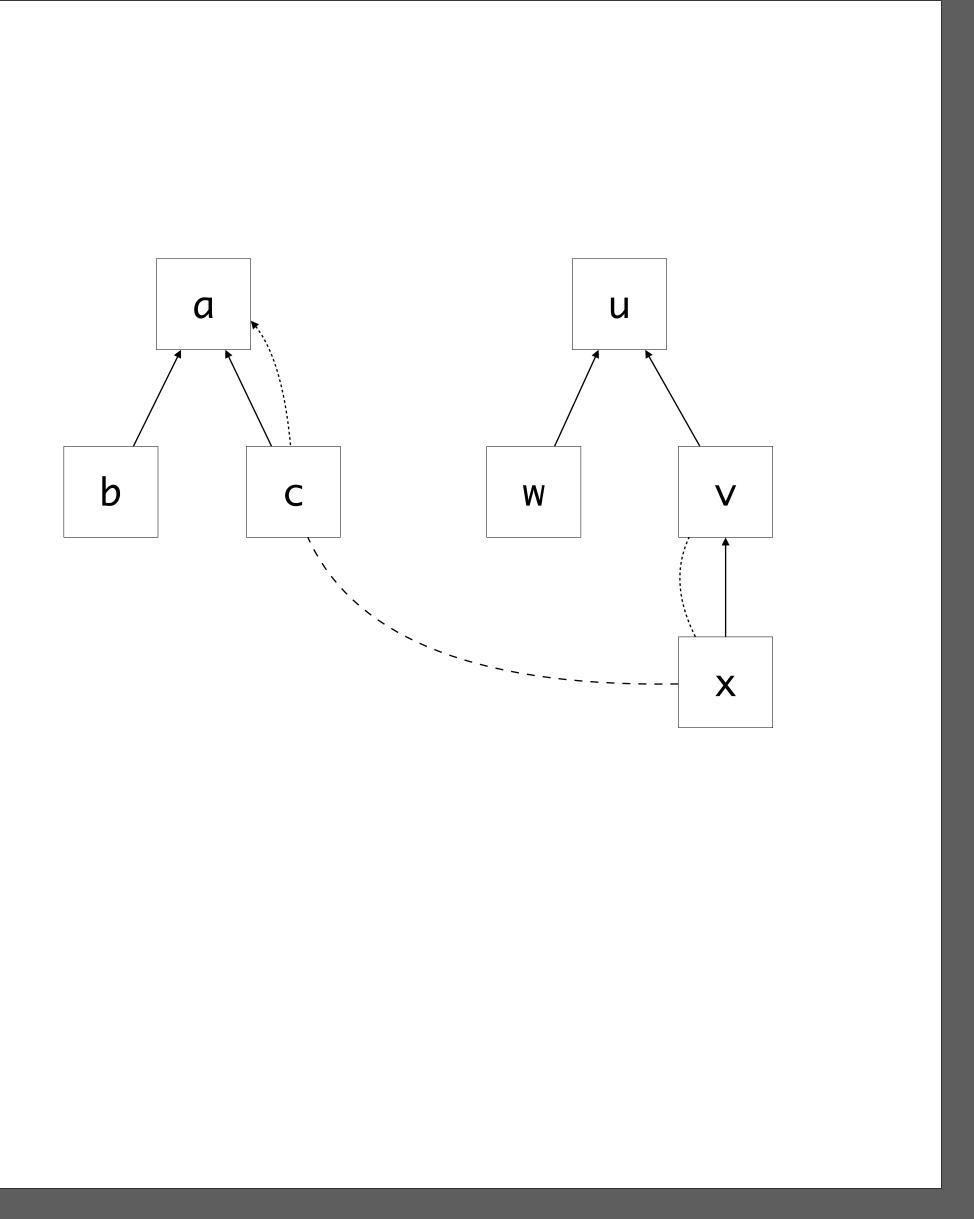
```
FIND(a):
  b := rep(a)
  if b == a:
     return a
  else
     return FIND(b)
UNION(a1,a2):
 b1 := FIND(a1)
 b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
 rep(a1) := a2
```





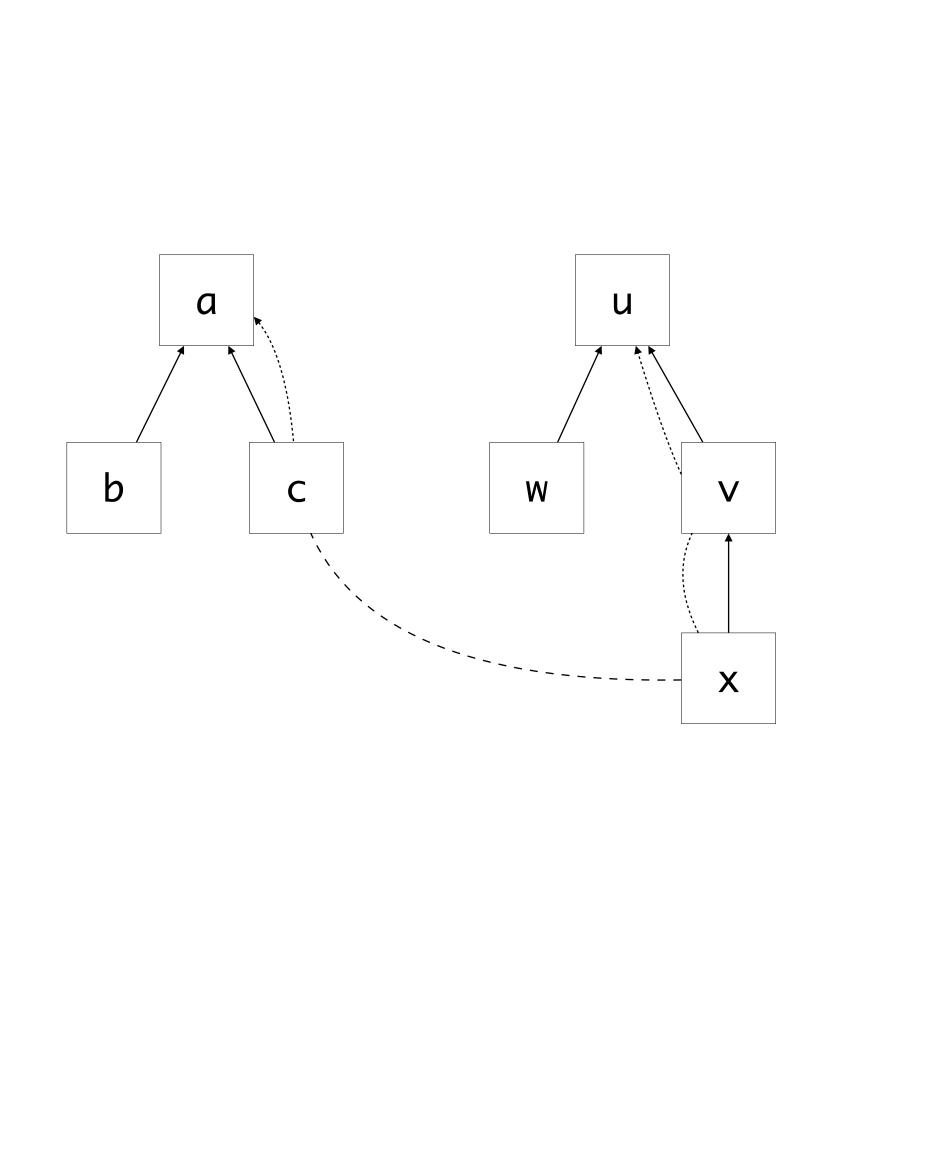
```
FIND(a):
  b := rep(a)
  if b == a:
     return a
  else
     return FIND(b)
UNION(a1,a2):
 b1 := FIND(a1)
 b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
 rep(a1) := a2
```

```
a == b
c == w
u == u
x == v
x == c
```



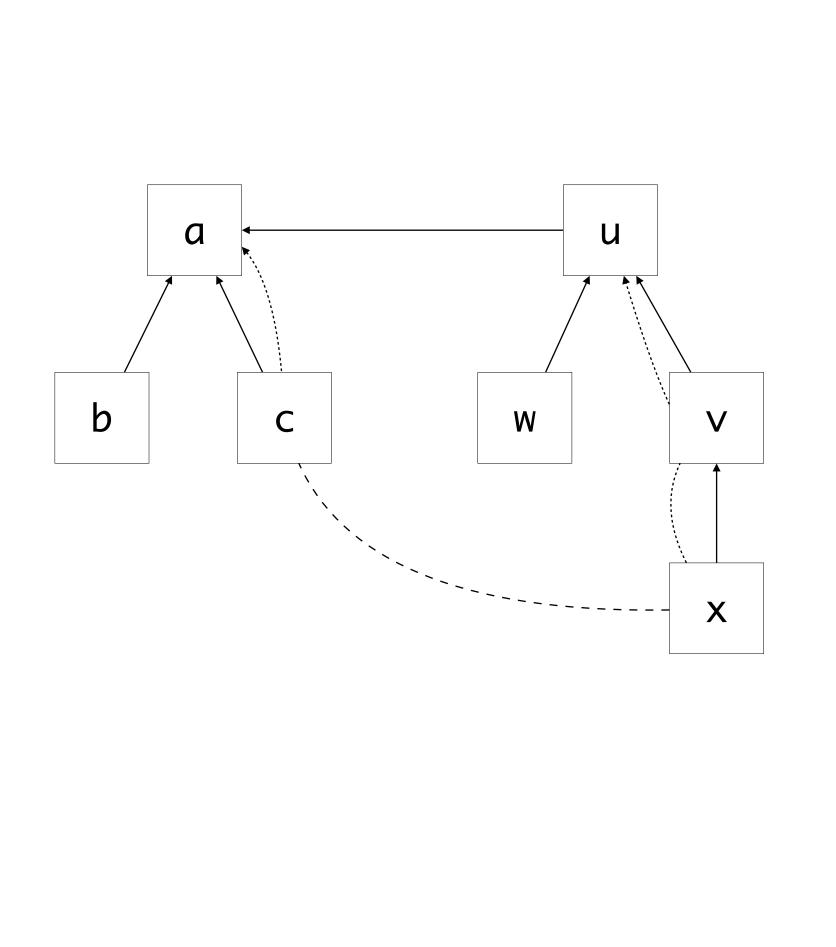
```
FIND(a):
  b := rep(a)
  if b == a:
     return a
  else
     return FIND(b)
UNION(a1,a2):
 b1 := FIND(a1)
 b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
 rep(a1) := a2
```

```
a == b
c == a
u == w
v == u
x == v
x == c
```

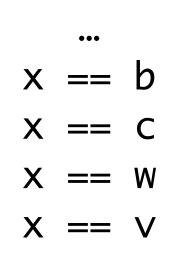


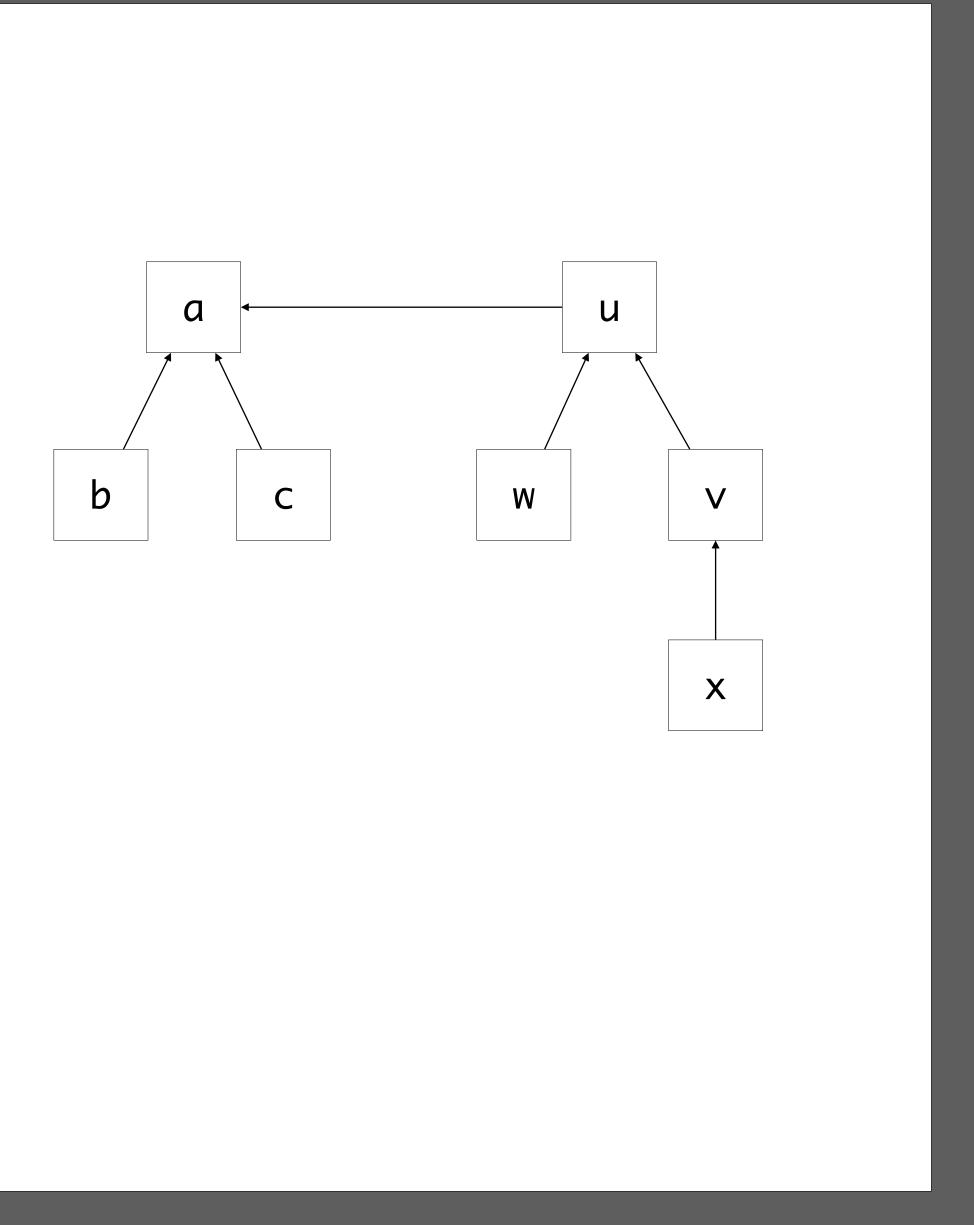
```
FIND(a):
  b := rep(a)
  if b == a:
     return a
  else
     return FIND(b)
UNION(a1,a2):
 b1 := FIND(a1)
 b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
 rep(a1) := a2
```

```
a == b
c == w
u == u
x == v
x == c
```

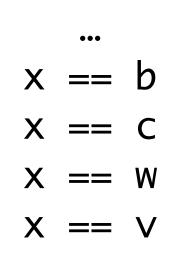


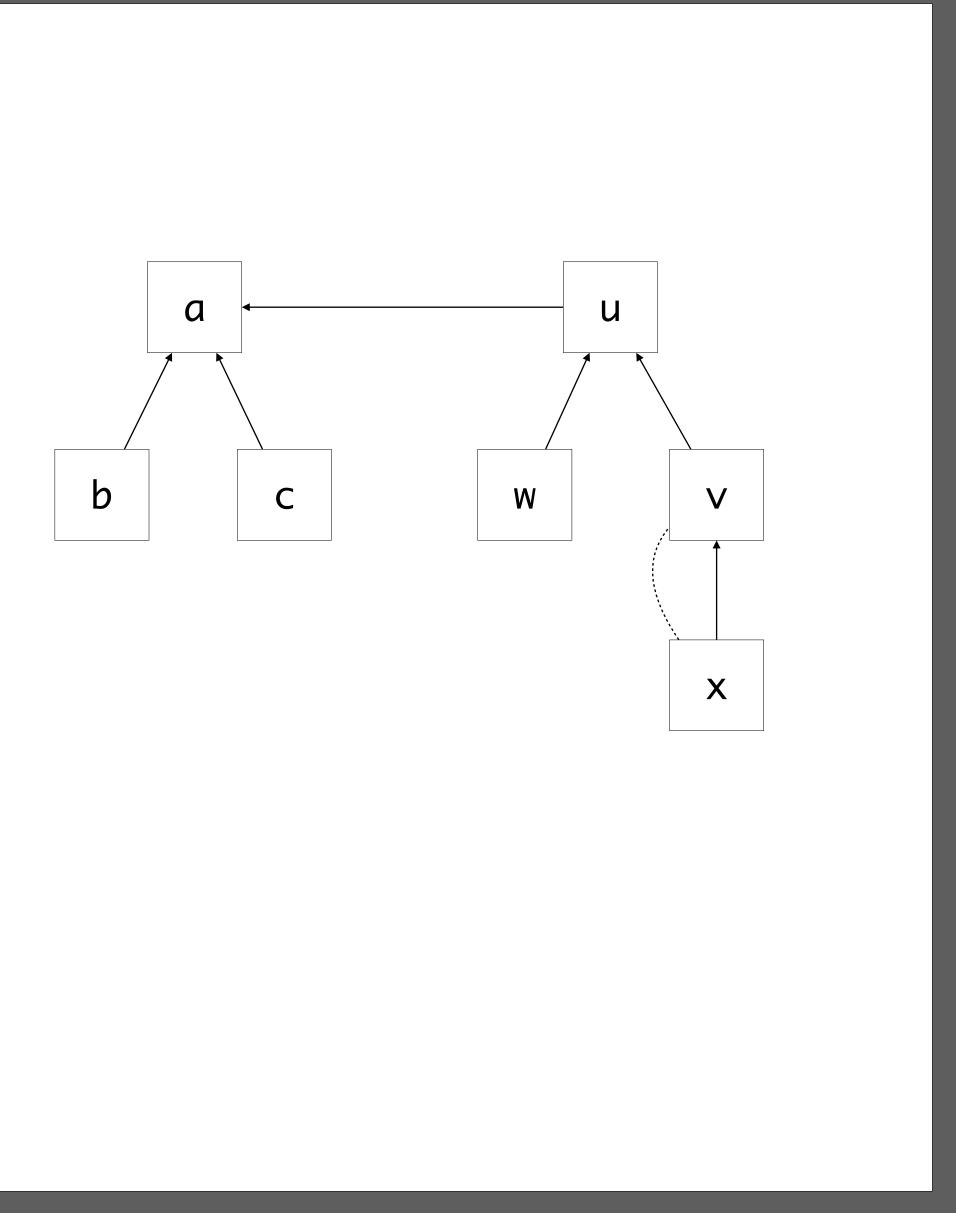
```
FIND(a):
 b := rep(a)
  if b == a:
     return a
  else
     return FIND(b)
UNION(a1,a2):
 b1 := FIND(a1)
 b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
 rep(a1) := a2
```



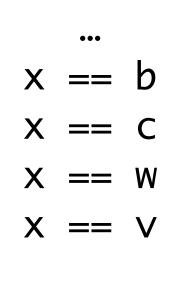


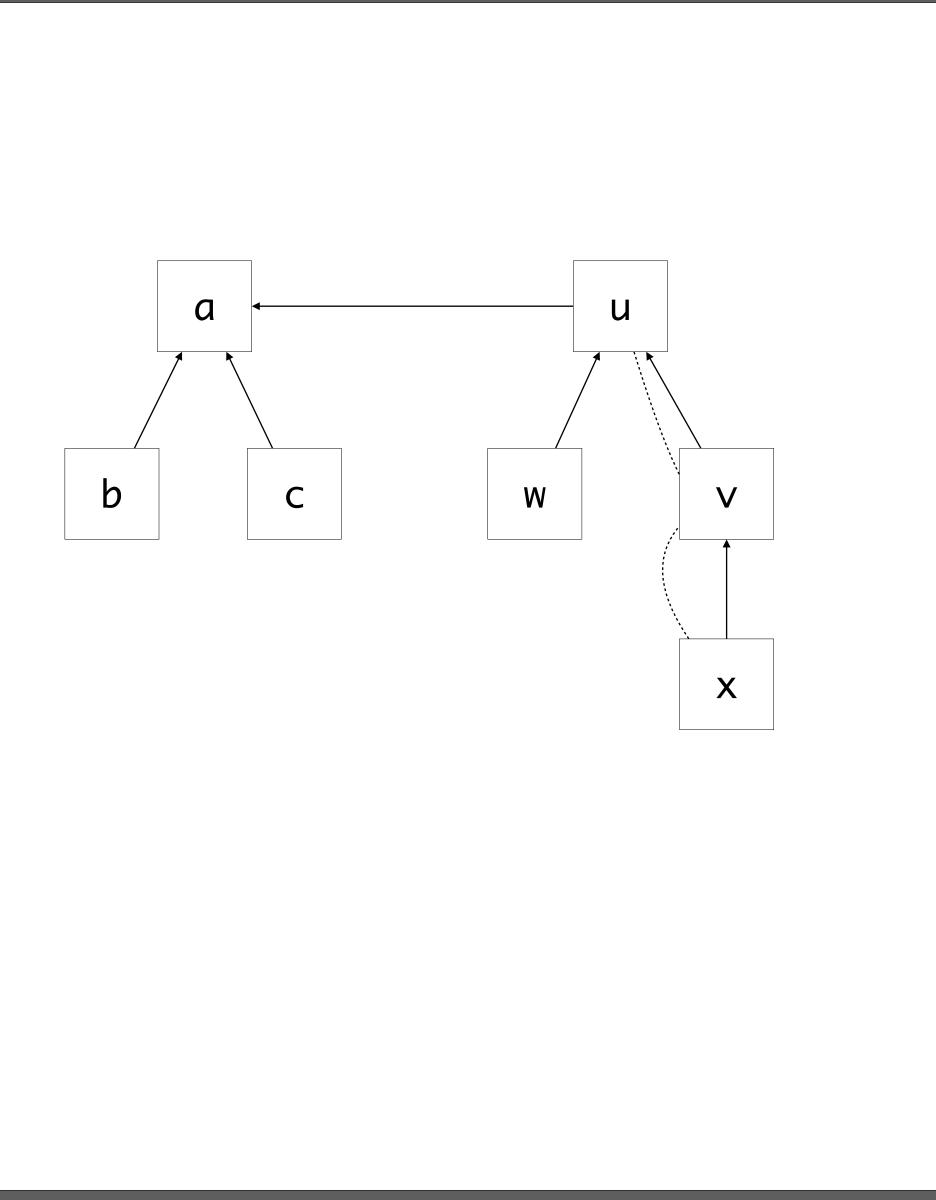
```
FIND(a):
 b := rep(a)
  if b == a:
     return a
  else
     return FIND(b)
UNION(a1,a2):
 b1 := FIND(a1)
 b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
 rep(a1) := a2
```





```
FIND(a):
 b := rep(a)
  if b == a:
     return a
  else
     return FIND(b)
UNION(a1,a2):
 b1 := FIND(a1)
 b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
 rep(a1) := a2
```





```
FIND(a):
 b := rep(a)
  if b == a:
     return a
  else
     return FIND(b)
UNION(a1,a2):
 b1 := FIND(a1)
 b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
 rep(a1) := a2
```

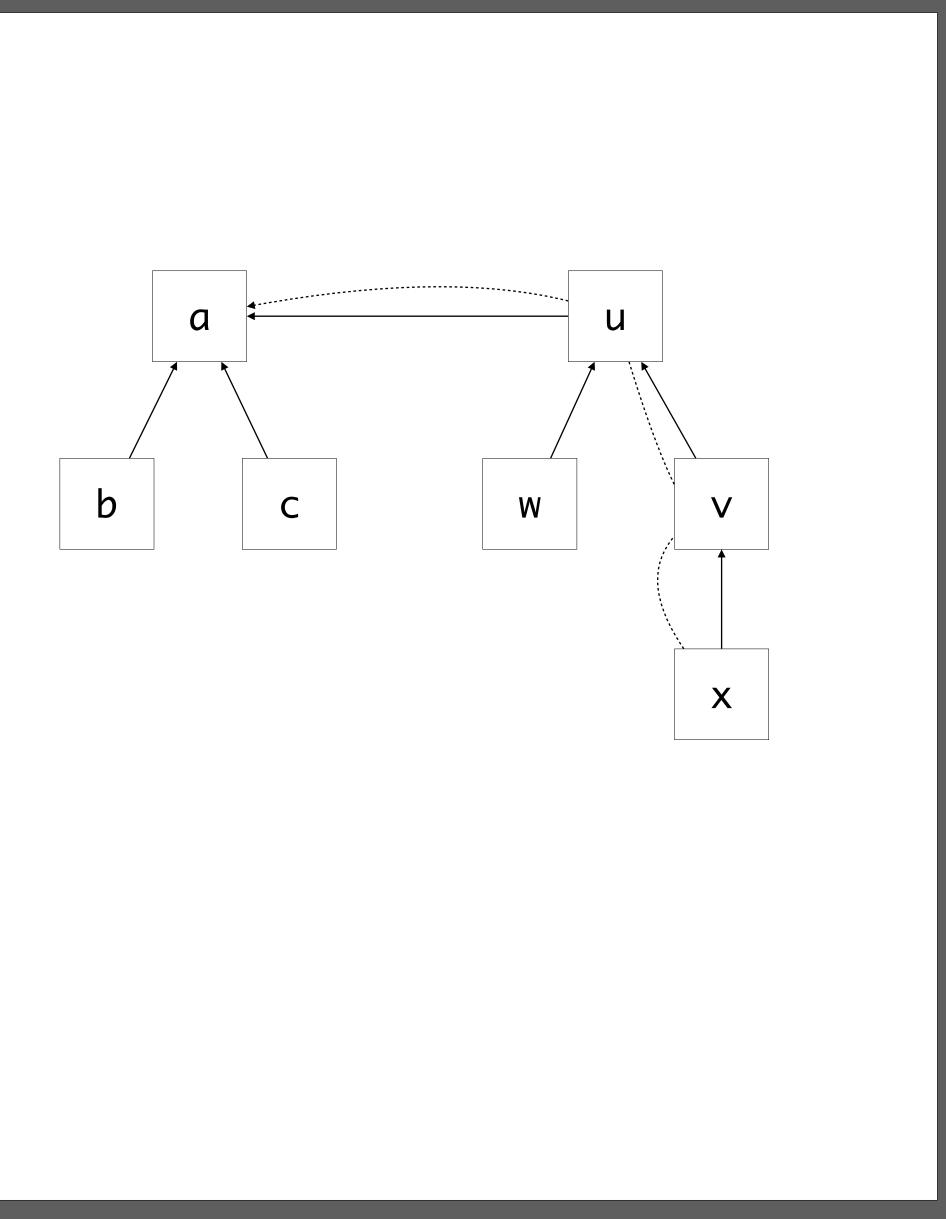
```
...

x == b

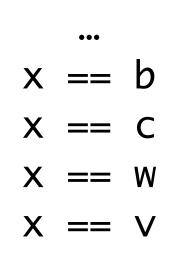
x == c

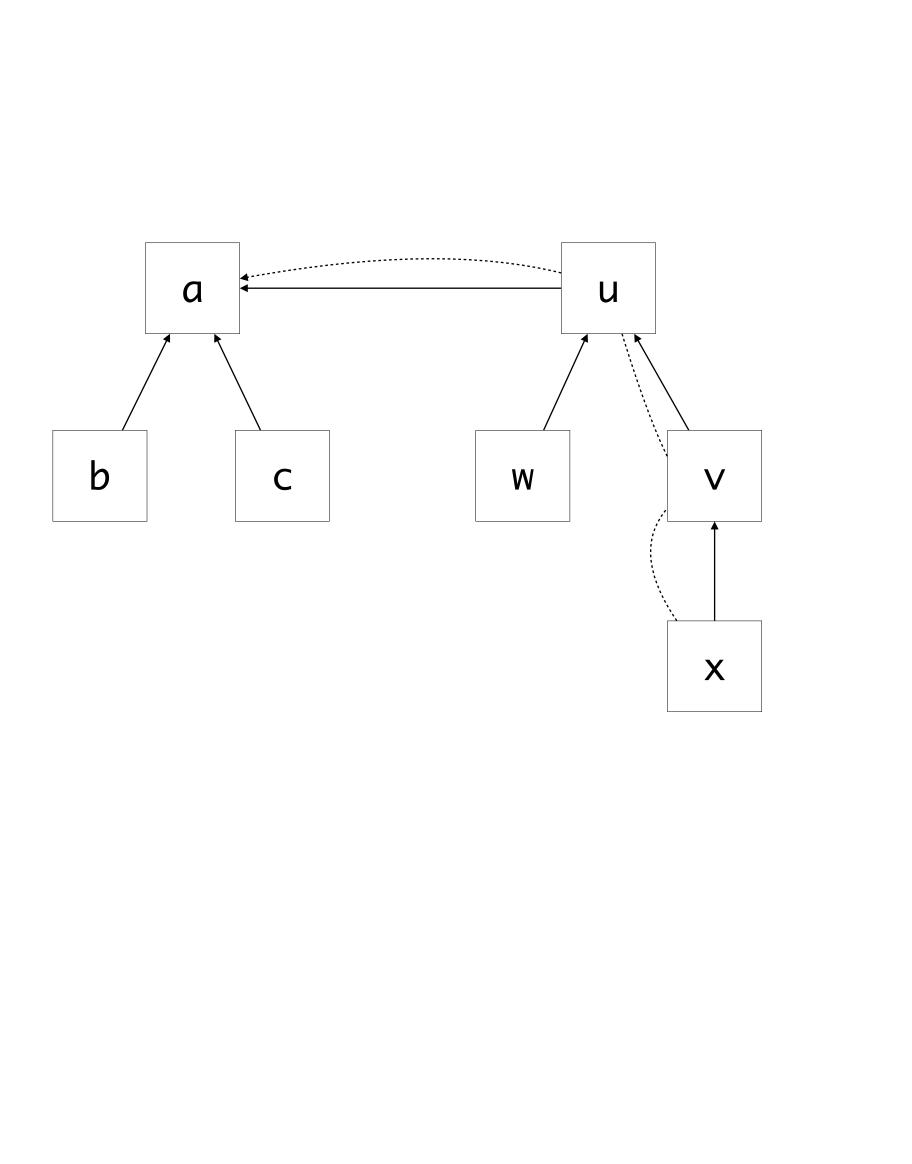
x == w

x == v
```

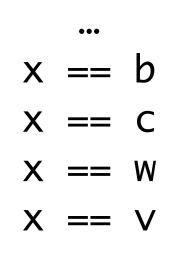


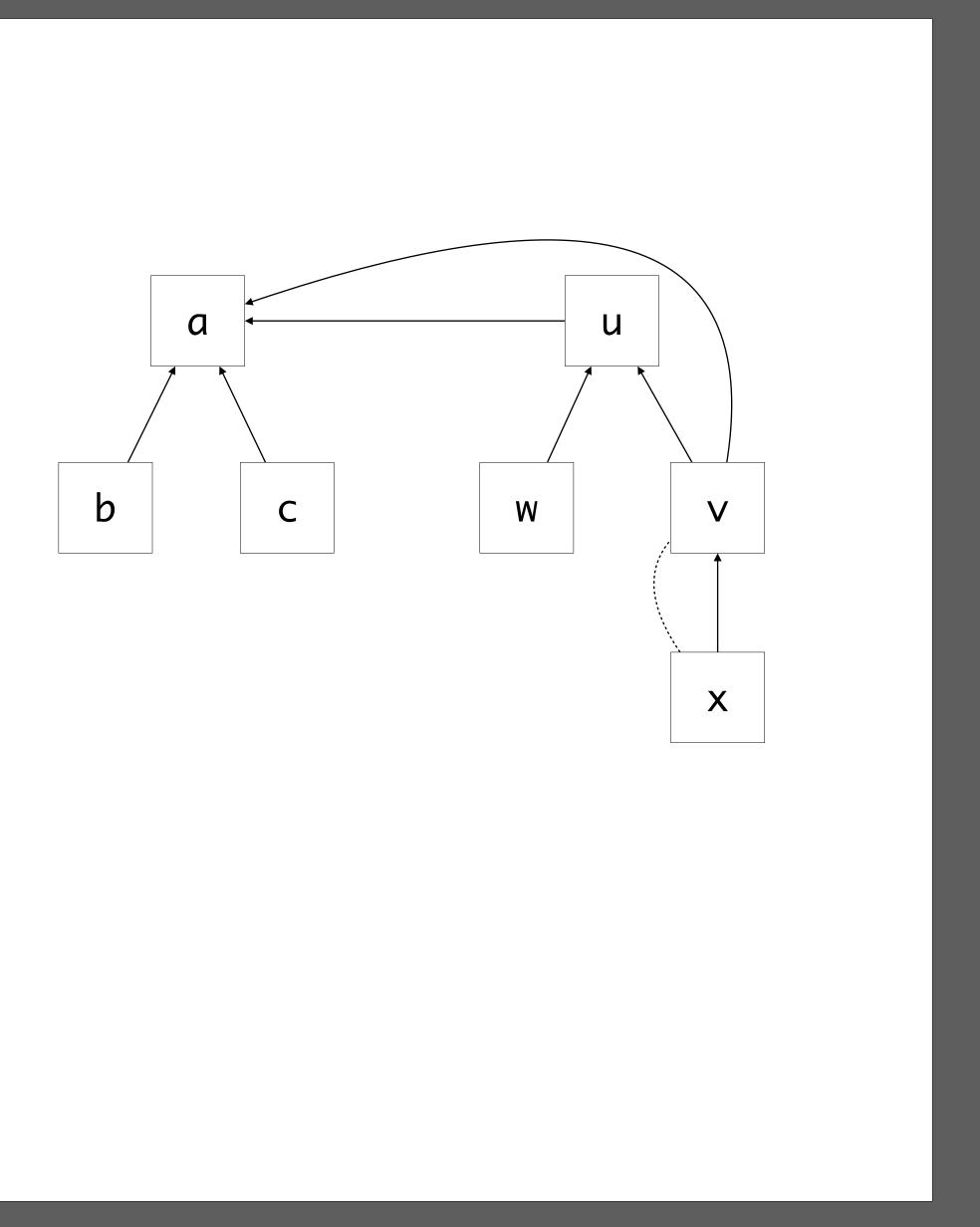
```
FIND(a):
 b := rep(a)
  if b == a:
     return a
  else
     b := FIND(b)
     rep(a) := b
     return b
UNION(a1,a2):
 b1 := FIND(a1)
 b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
 rep(a1) := a2
```





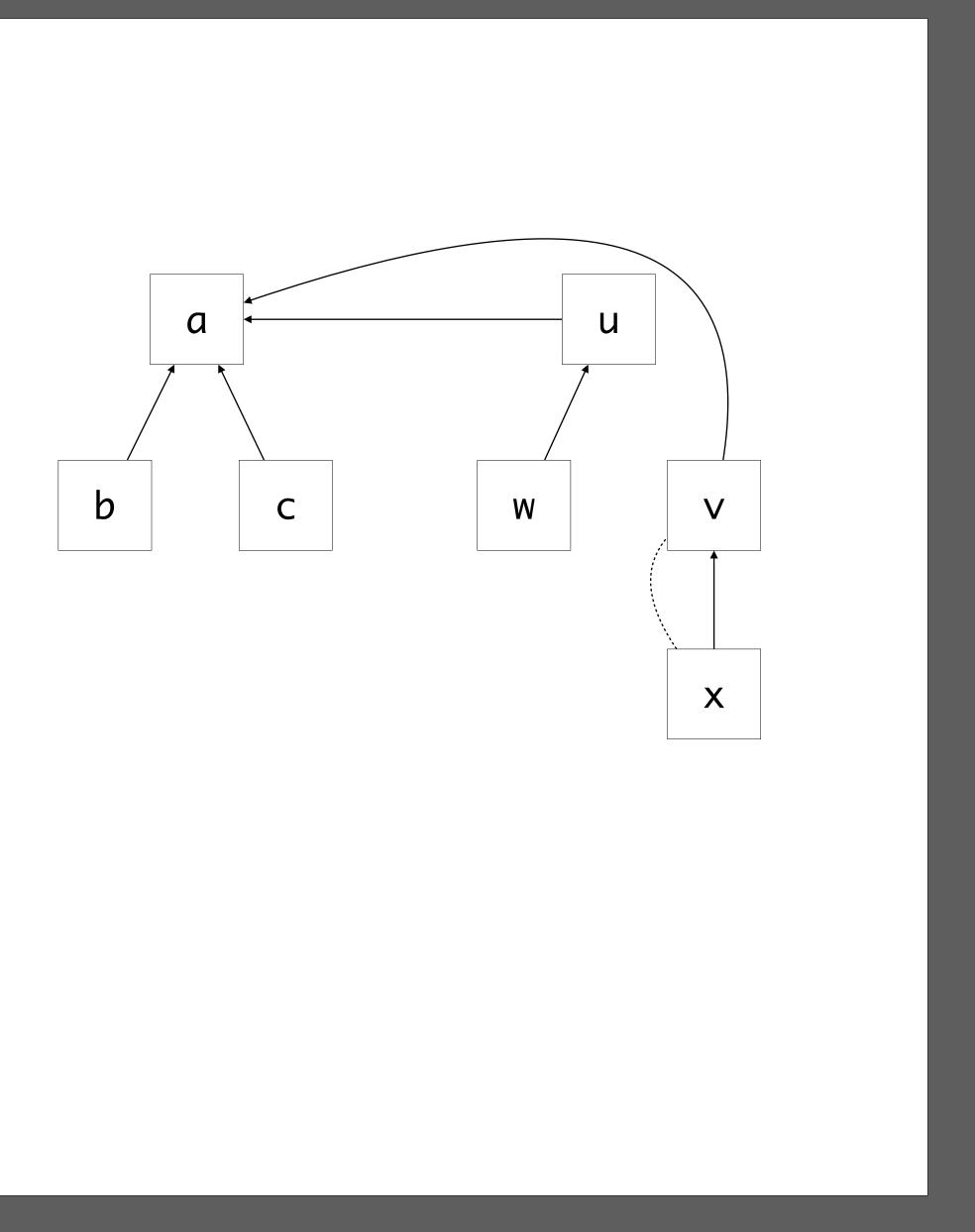
```
FIND(a):
  b := rep(a)
  if b == a:
     return a
  else
     b := FIND(b)
     rep(a) := b
     return b
UNION(a1,a2):
 b1 := FIND(a1)
 b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
 rep(a1) := a2
```





```
FIND(a):
  b := rep(a)
  if b == a:
     return a
  else
     b := FIND(b)
     rep(a) := b
     return b
UNION(a1,a2):
 b1 := FIND(a1)
 b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
 rep(a1) := a2
```

```
... x == b
x == c
x == w
x == v
```



```
FIND(a):
  b := rep(a)
  if b == a:
     return a
  else
     b := FIND(b)
     rep(a) := b
     return b
UNION(a1,a2):
 b1 := FIND(a1)
 b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
 rep(a1) := a2
```

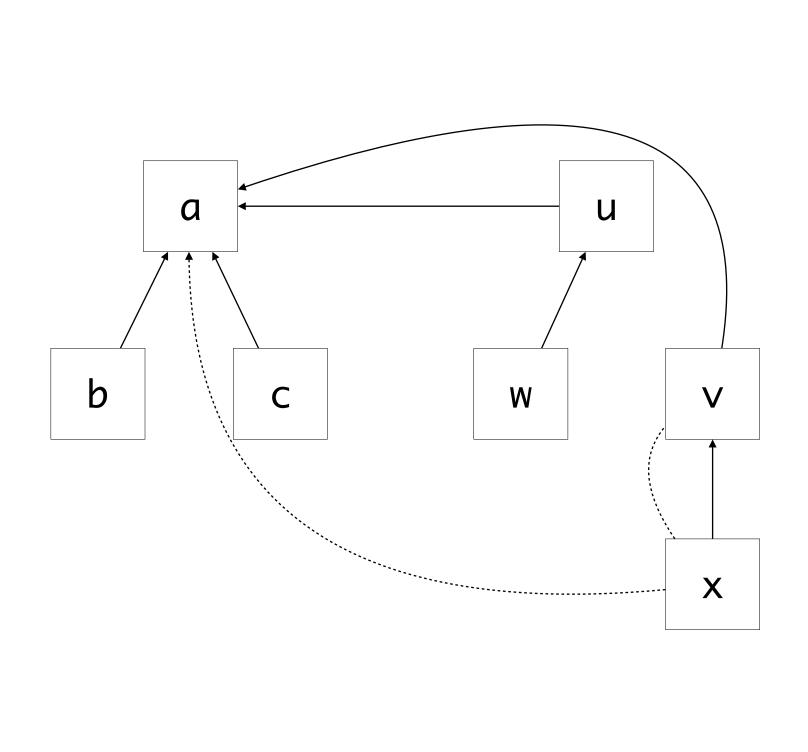
```
...

X == b

X == C

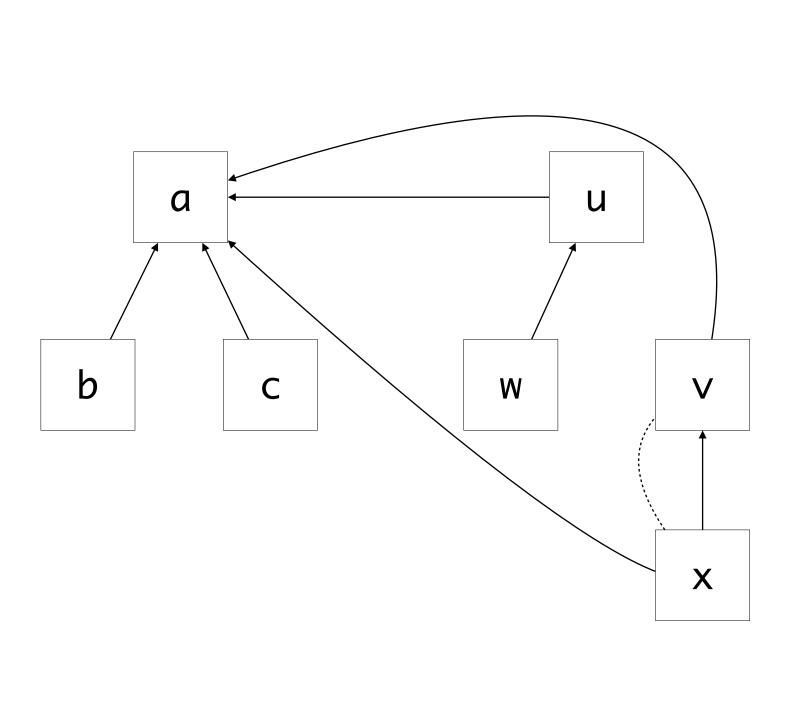
X == W

X == V
```



```
FIND(a):
  b := rep(a)
  if b == a:
     return a
  else
     b := FIND(b)
     rep(a) := b
     return b
UNION(a1,a2):
 b1 := FIND(a1)
 b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
 rep(a1) := a2
```

```
... x == b
x == c
x == w
x == v
```



```
FIND(a):
  b := rep(a)
  if b == a:
     return a
  else
     b := FIND(b)
     rep(a) := b
     return b
UNION(a1,a2):
 b1 := FIND(a1)
 b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
 rep(a1) := a2
```

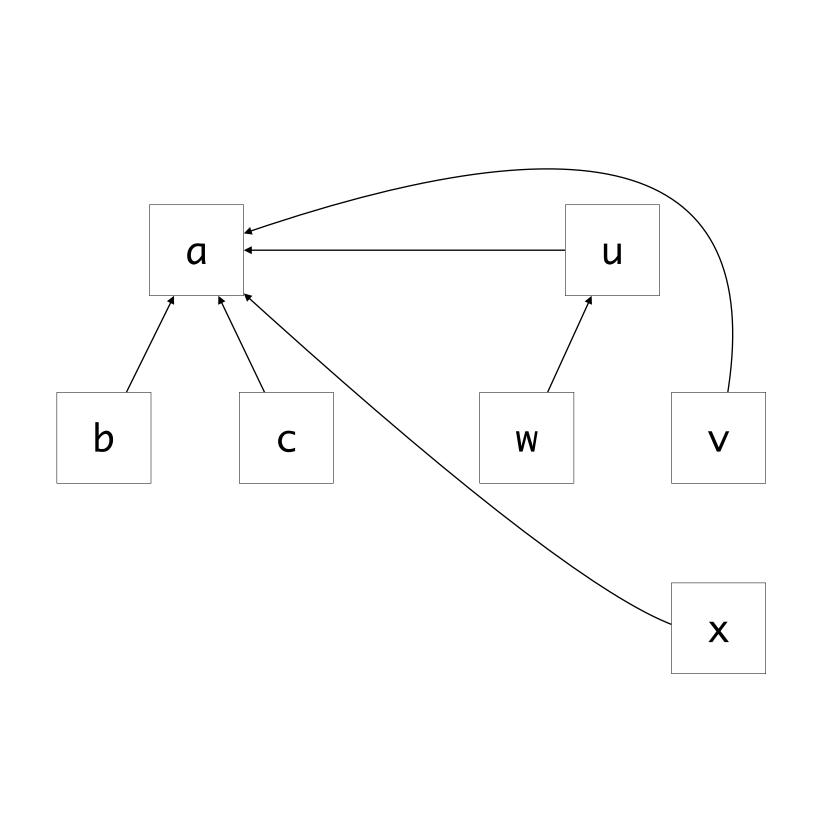
```
...

X === b

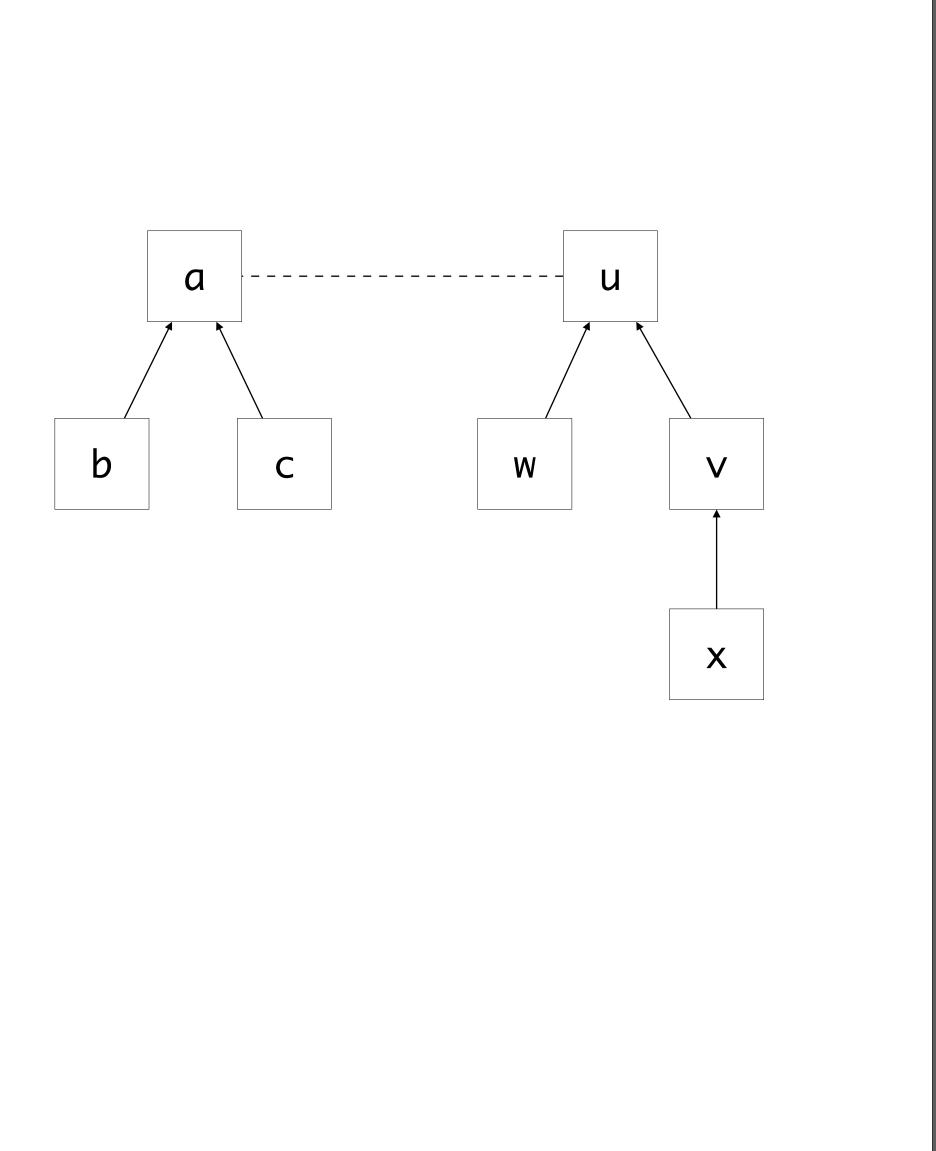
X === C

X === W

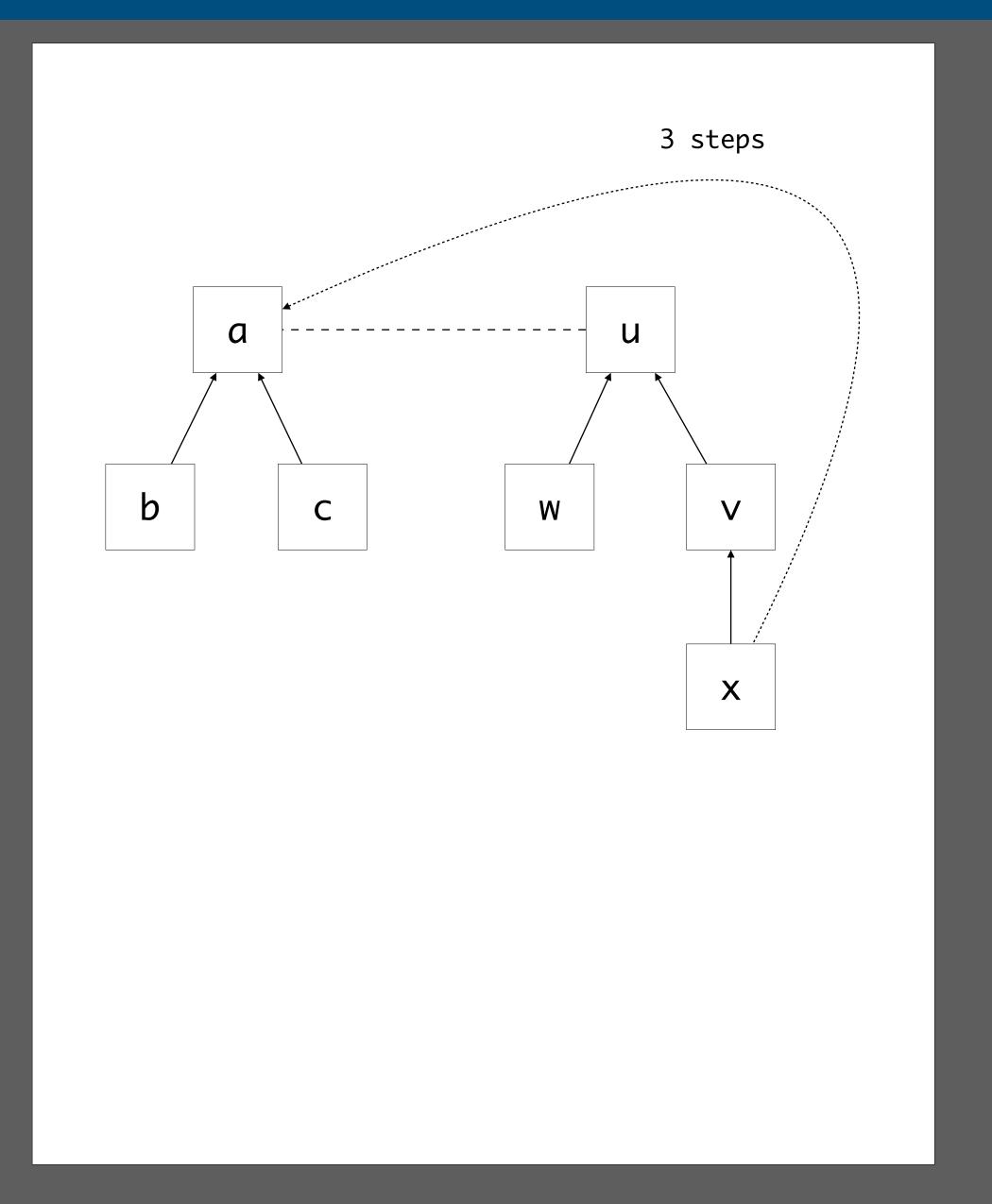
X === V
```



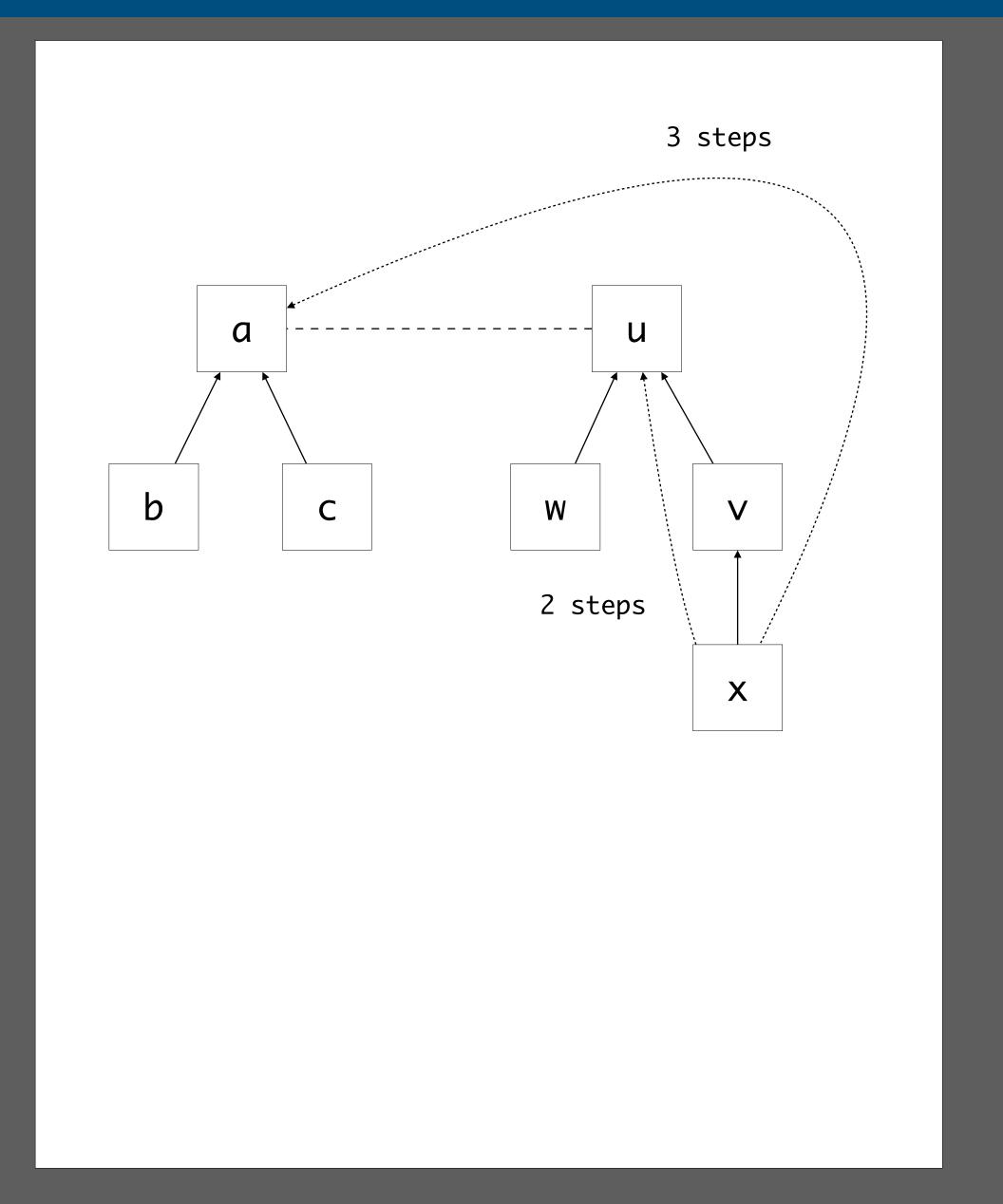
```
FIND(a):
 b := rep(a)
  if b == a:
     return a
  else
     b := FIND(b)
     rep(a) := b
     return b
UNION(a1,a2):
 b1 := FIND(a1)
 b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
 rep(a1) := a2
```

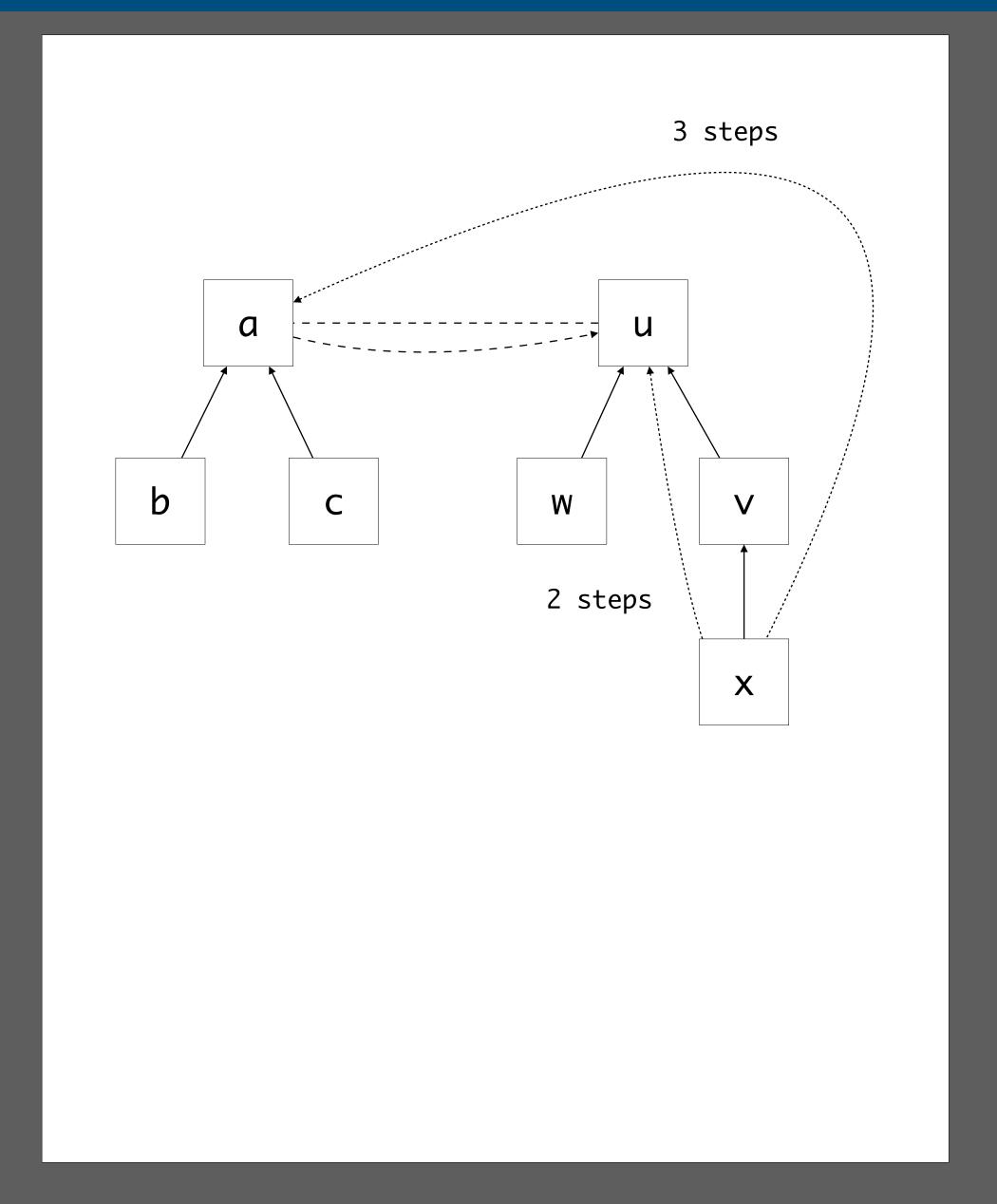
```
FIND(a):
 b := rep(a)
  if b == a:
     return a
  else
     b := FIND(b)
     rep(a) := b
     return b
UNION(a1,a2):
 b1 := FIND(a1)
 b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
 rep(a1) := a2
```

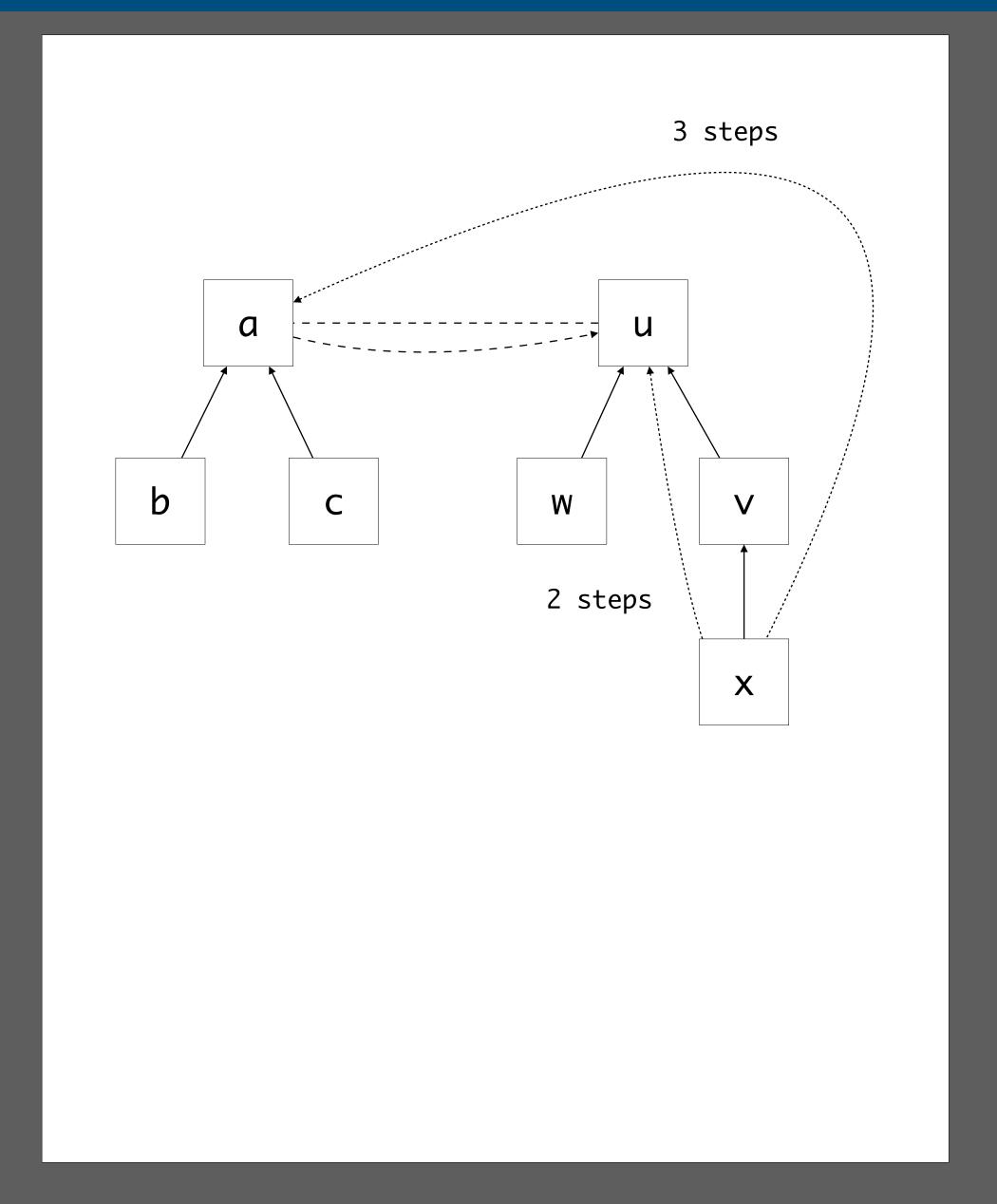
```
FIND(a):
 b := rep(a)
  if b == a:
     return a
  else
     b := FIND(b)
     rep(a) := b
     return b
UNION(a1,a2):
 b1 := FIND(a1)
 b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
 rep(a1) := a2
```

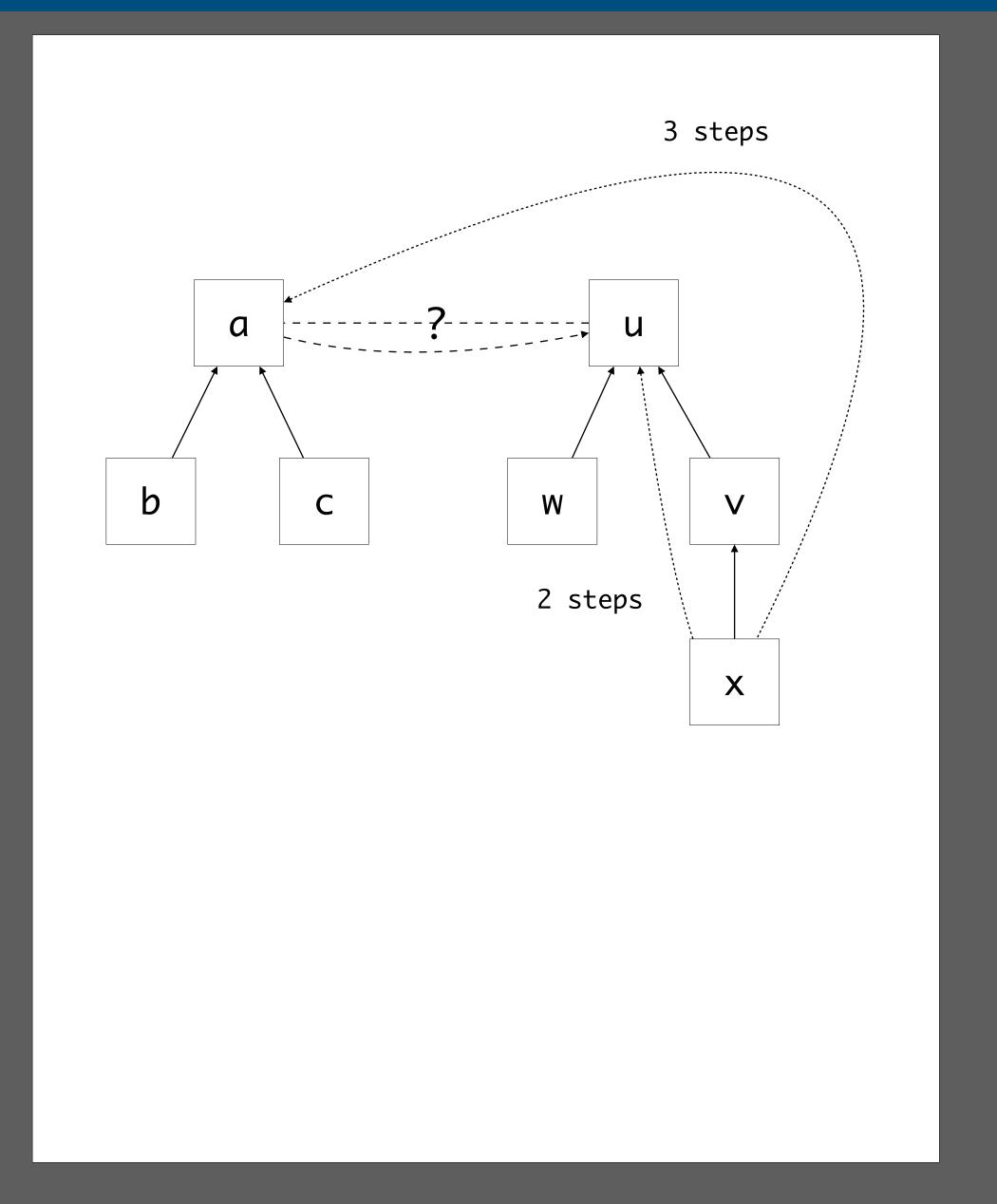
```
FIND(a):
 b := rep(a)
  if b == a:
     return a
  else
     b := FIND(b)
     rep(a) := b
     return b
UNION(a1,a2):
 b1 := FIND(a1)
 b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
 rep(a1) := a2
```

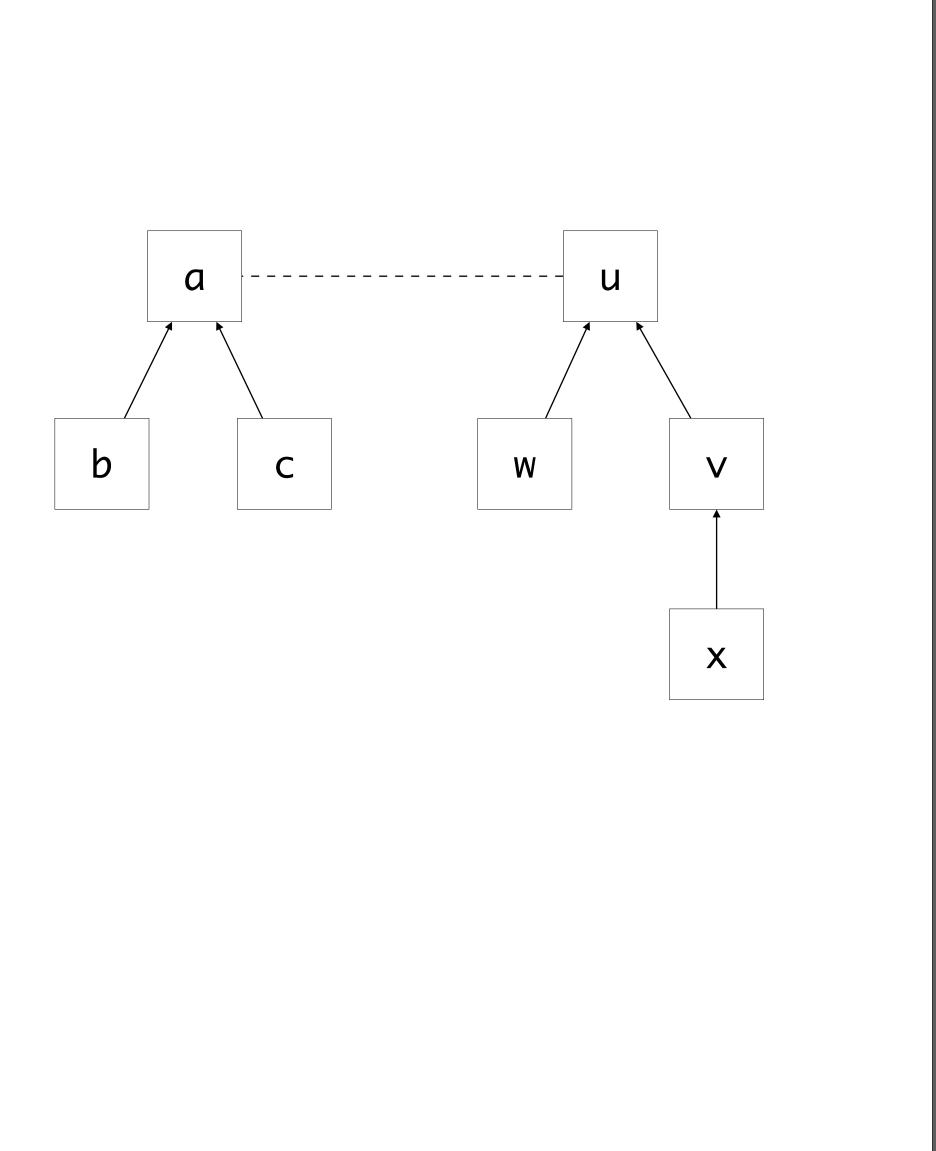
```
FIND(a):
 b := rep(a)
  if b == a:
     return a
  else
     b := FIND(b)
     rep(a) := b
     return b
UNION(a1,a2):
 b1 := FIND(a1)
 b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
 rep(a1) := a2
```

```
FIND(a):
 b := rep(a)
  if b == a:
     return a
  else
     b := FIND(b)
     rep(a) := b
     return b
UNION(a1,a2):
 b1 := FIND(a1)
 b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
 rep(a1) := a2
```

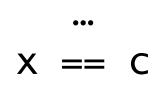
```
FIND(a):
 b := rep(a)
  if b == a:
     return a
  else
     b := FIND(b)
     rep(a) := b
     return b
UNION(a1,a2):
 b1 := FIND(a1)
 b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
 rep(a1) := a2
```

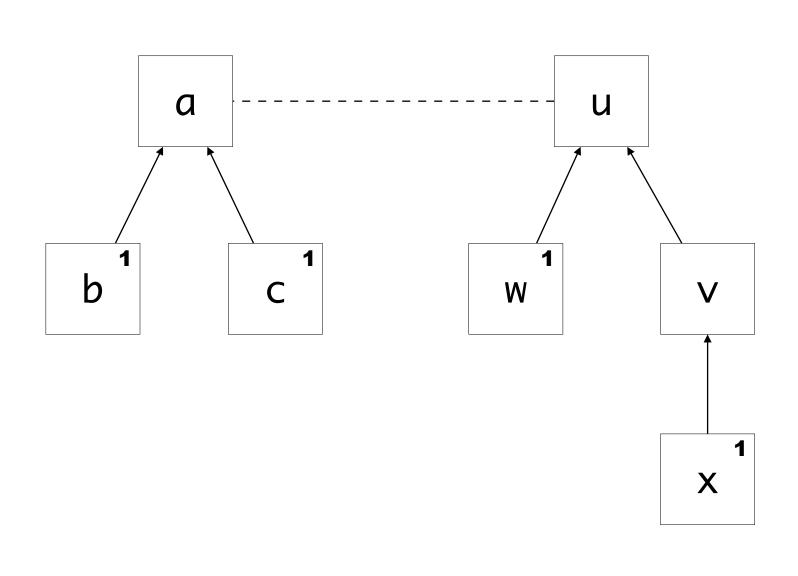



```
FIND(a):
 b := rep(a)
 if b == a:
     return a
  else
     b := FIND(b)
     rep(a) := b
     return b
UNION(a1,a2):
  b1 := FIND(a1)
  b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
  if size(a2) > size(a1):
     rep(a1) := a2
     size(a2) += size(a1)
  else:
     rep(a2) := a1
     size(a1) += size(a2)
```

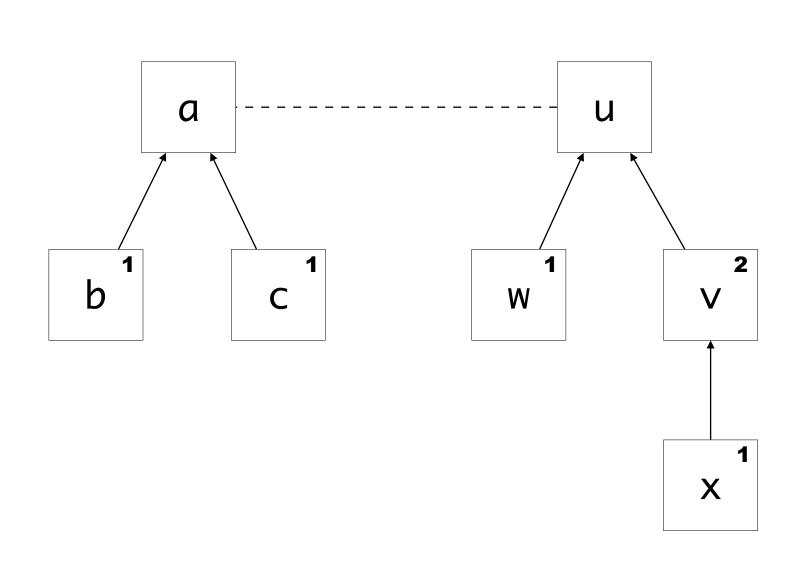



```
FIND(a):
 b := rep(a)
  if b == a:
     return a
  else
     b := FIND(b)
     rep(a) := b
     return b
UNION(a1,a2):
  b1 := FIND(a1)
  b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
  if size(a2) > size(a1):
     rep(a1) := a2
     size(a2) += size(a1)
  else:
     rep(a2) := a1
     size(a1) += size(a2)
```

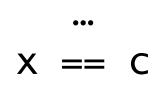


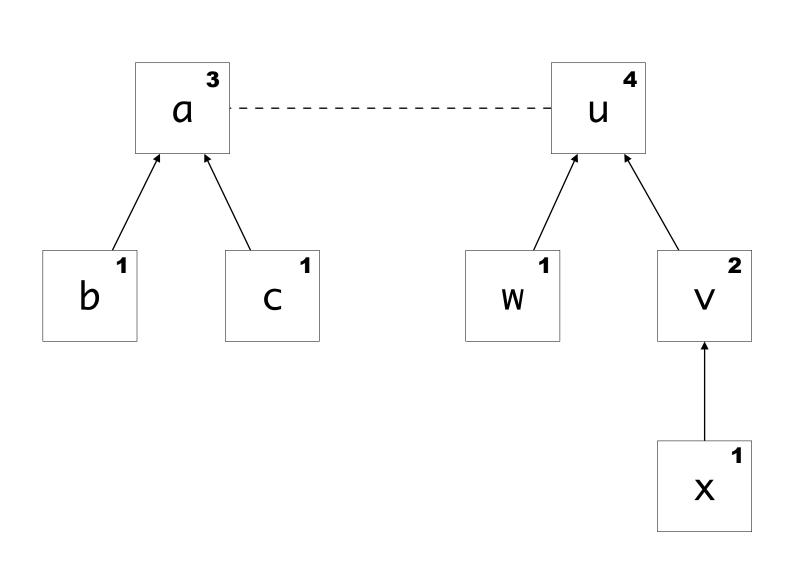


```
FIND(a):
 b := rep(a)
  if b == a:
     return a
  else
     b := FIND(b)
     rep(a) := b
     return b
UNION(a1,a2):
  b1 := FIND(a1)
  b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
  if size(a2) > size(a1):
     rep(a1) := a2
     size(a2) += size(a1)
  else:
     rep(a2) := a1
     size(a1) += size(a2)
```

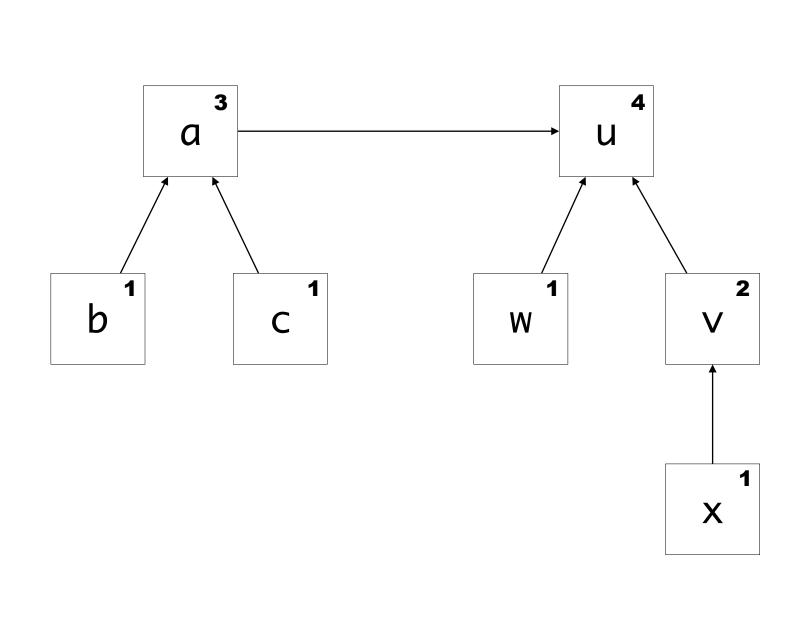
```
FIND(a):
 b := rep(a)
  if b == a:
     return a
  else
     b := FIND(b)
     rep(a) := b
     return b
UNION(a1,a2):
  b1 := FIND(a1)
  b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
  if size(a2) > size(a1):
     rep(a1) := a2
     size(a2) += size(a1)
  else:
     rep(a2) := a1
     size(a1) += size(a2)
```





Tree Balancing

```
FIND(a):
 b := rep(a)
  if b == a:
     return a
  else
     b := FIND(b)
     rep(a) := b
     return b
UNION(a1,a2):
  b1 := FIND(a1)
  b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
  if size(a2) > size(a1):
     rep(a1) := a2
     size(a2) += size(a1)
  else:
     rep(a2) := a1
     size(a1) += size(a2)
```

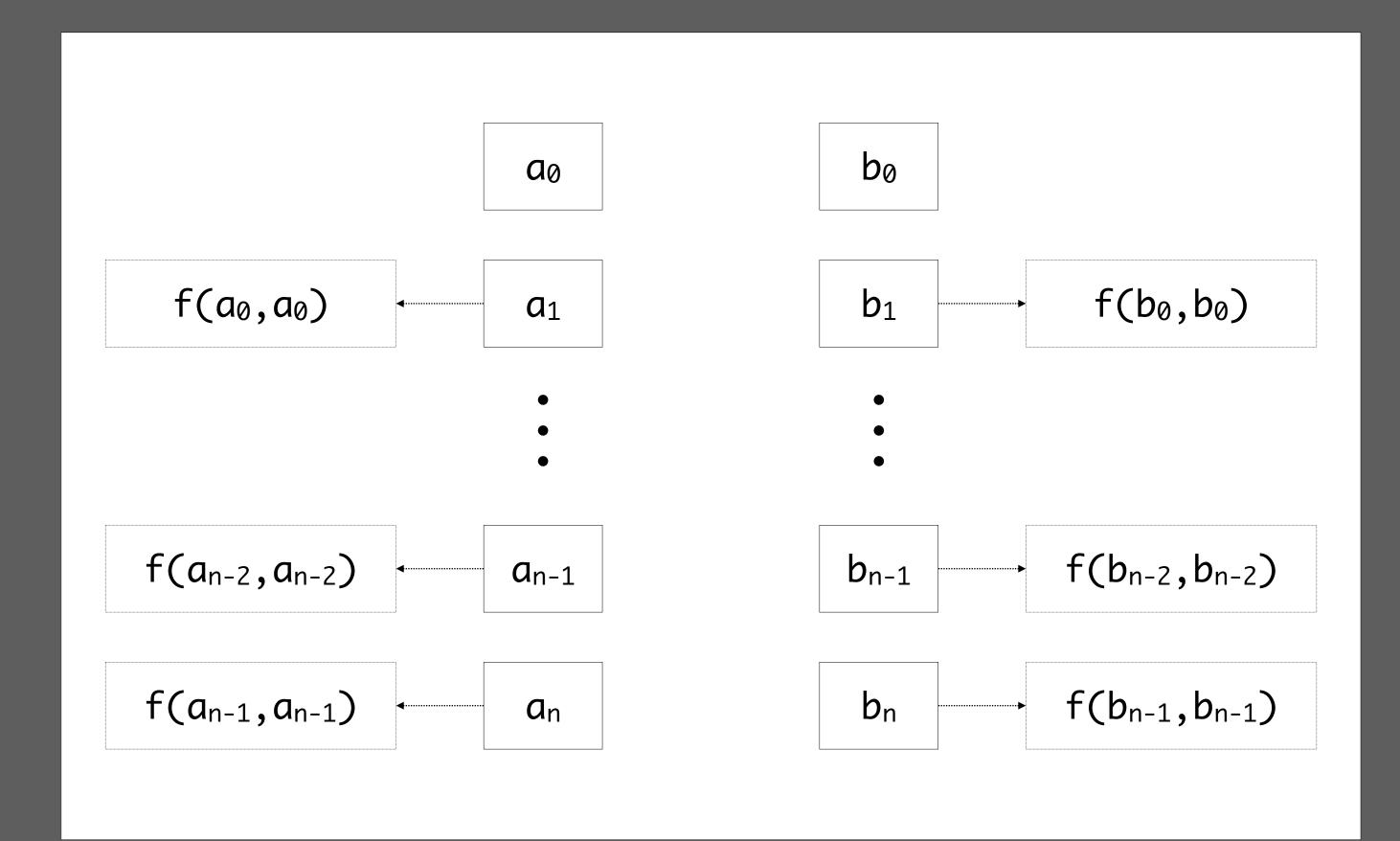



```
h(a_1, ..., a_n), f(b_0, b_0), ..., f(b_{n-1}, b_{n-1}), a_n) == h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)
```

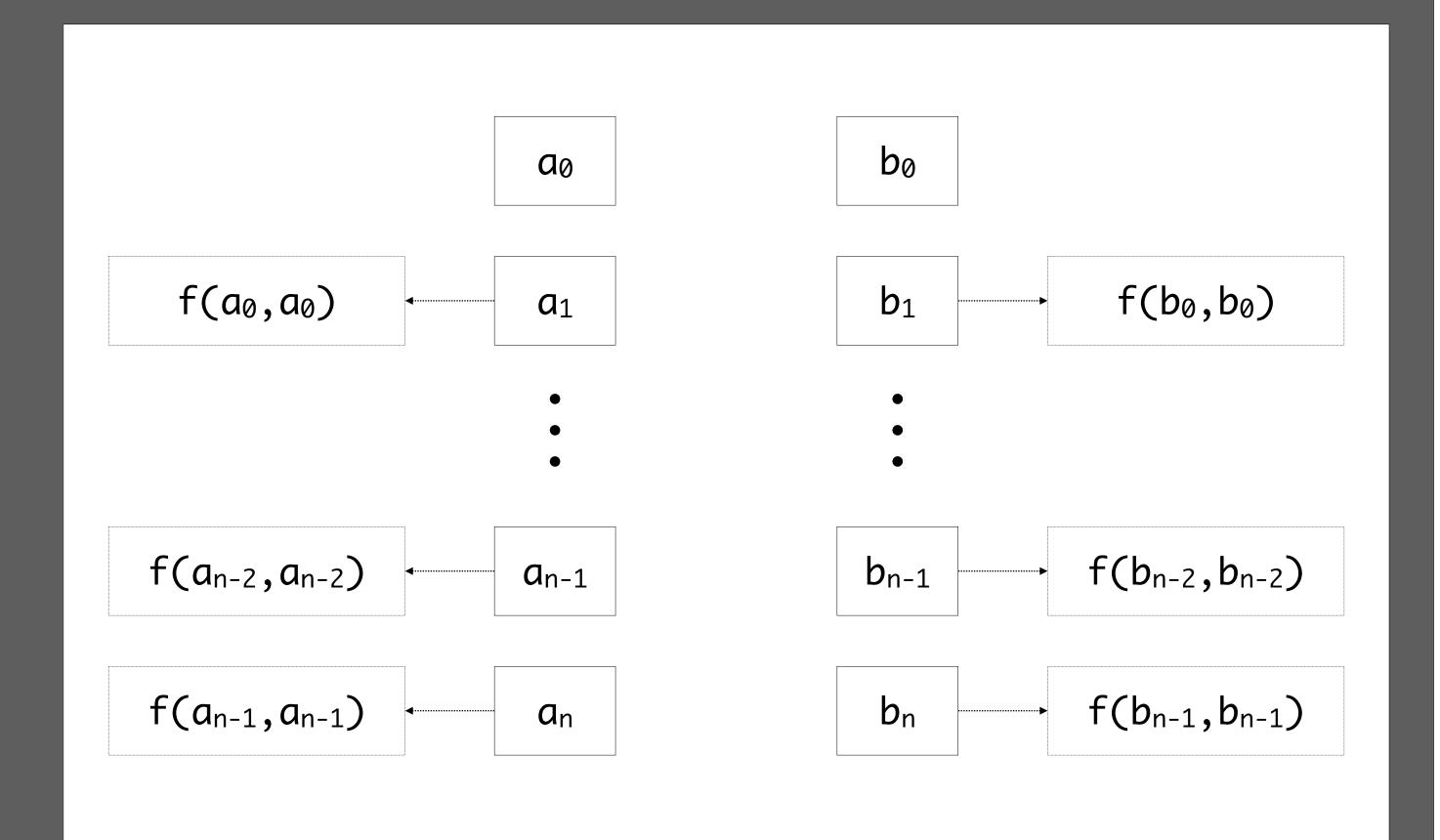
 $h(a_1, a_n)$, $h(b_0, b_0)$, ..., $f(b_{n-1}, b_{n-1})$, $a_n) = h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)$

bø **a**0 $f(a_0,a_0)$ $f(b_0,b_0)$ b_1 a_1 $f(a_{n-2}, a_{n-2})$ $f(b_{n-2},b_{n-2})$ b_{n-1} a_{n-1} $f(b_{n-1}, b_{n-1})$ $f(a_{n-1}, a_{n-1})$ b_n a_n

$$h(a_1, a_n)$$
, $h(b_0, b_0)$, ..., $f(b_{n-1}, b_{n-1})$, $a_n) = h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)$

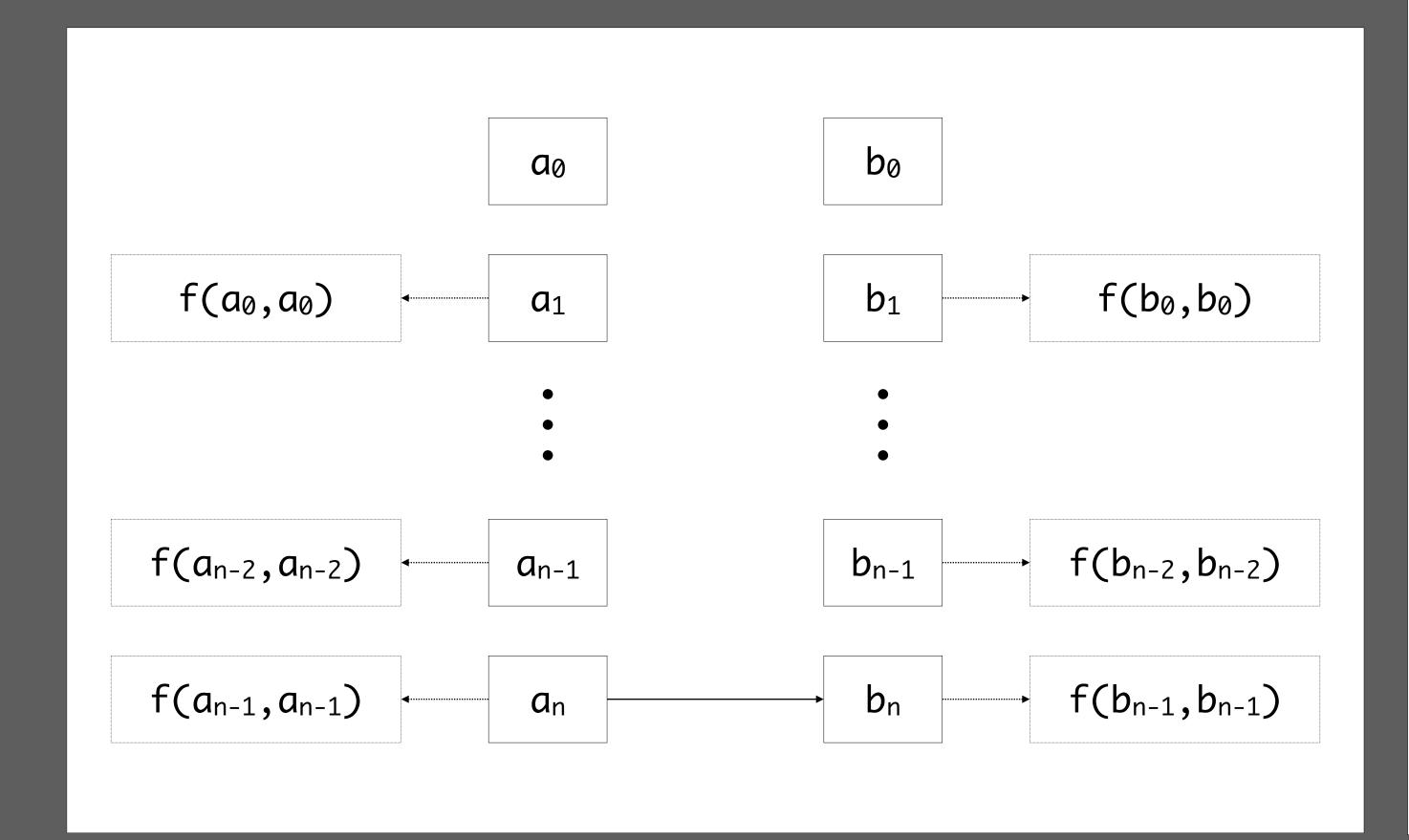


$$h(a_1, ..., a_n)$$
, $f(b_0, b_0)$, ..., $f(b_{n-1}, b_{n-1})$, $a_n) == h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)$



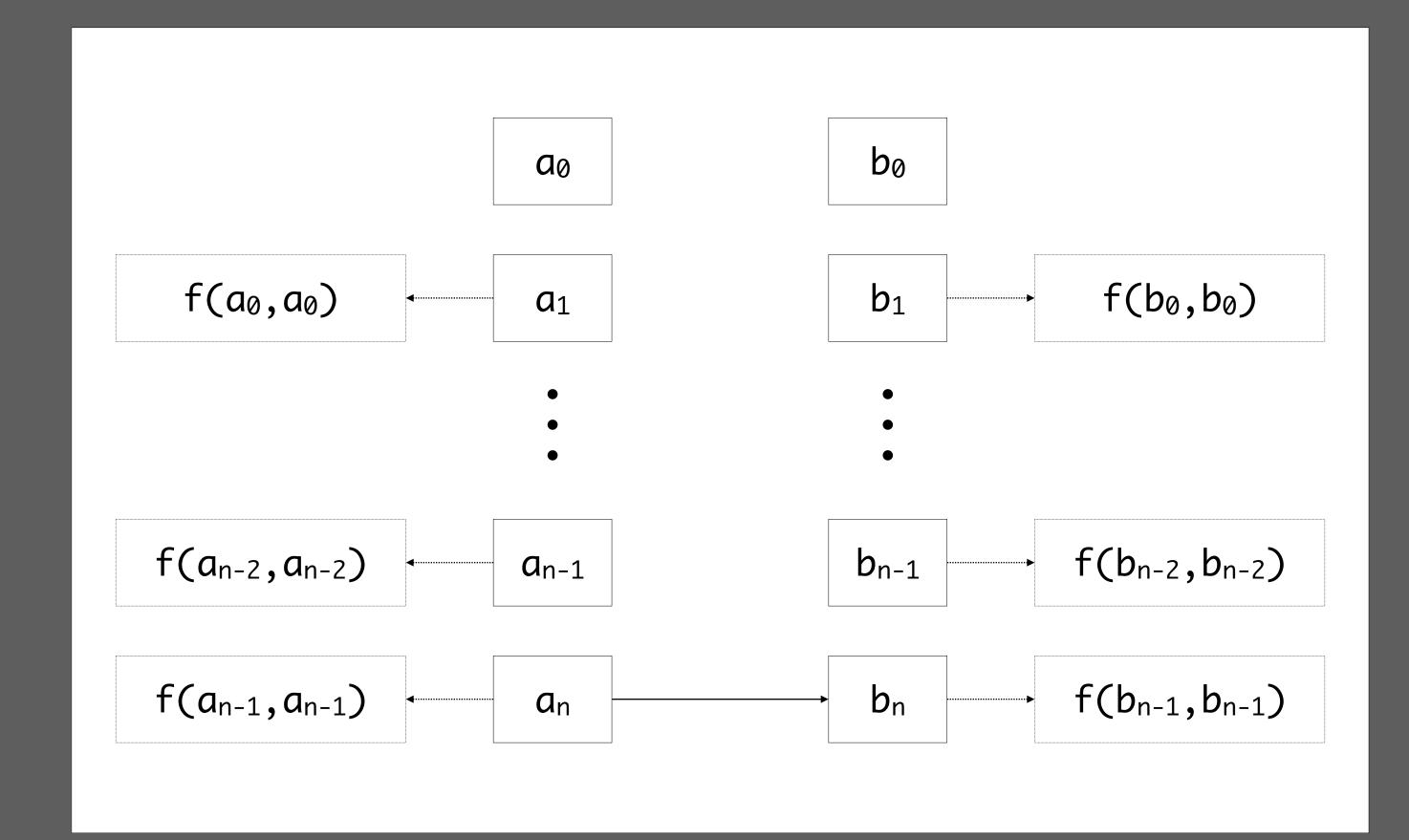
$$a_n == b_n$$

$$h(a_1, ..., a_n)$$
, $f(b_0, b_0)$, ..., $f(b_{n-1}, b_{n-1})$, $a_n) = h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)$



$$a_n == b_n$$

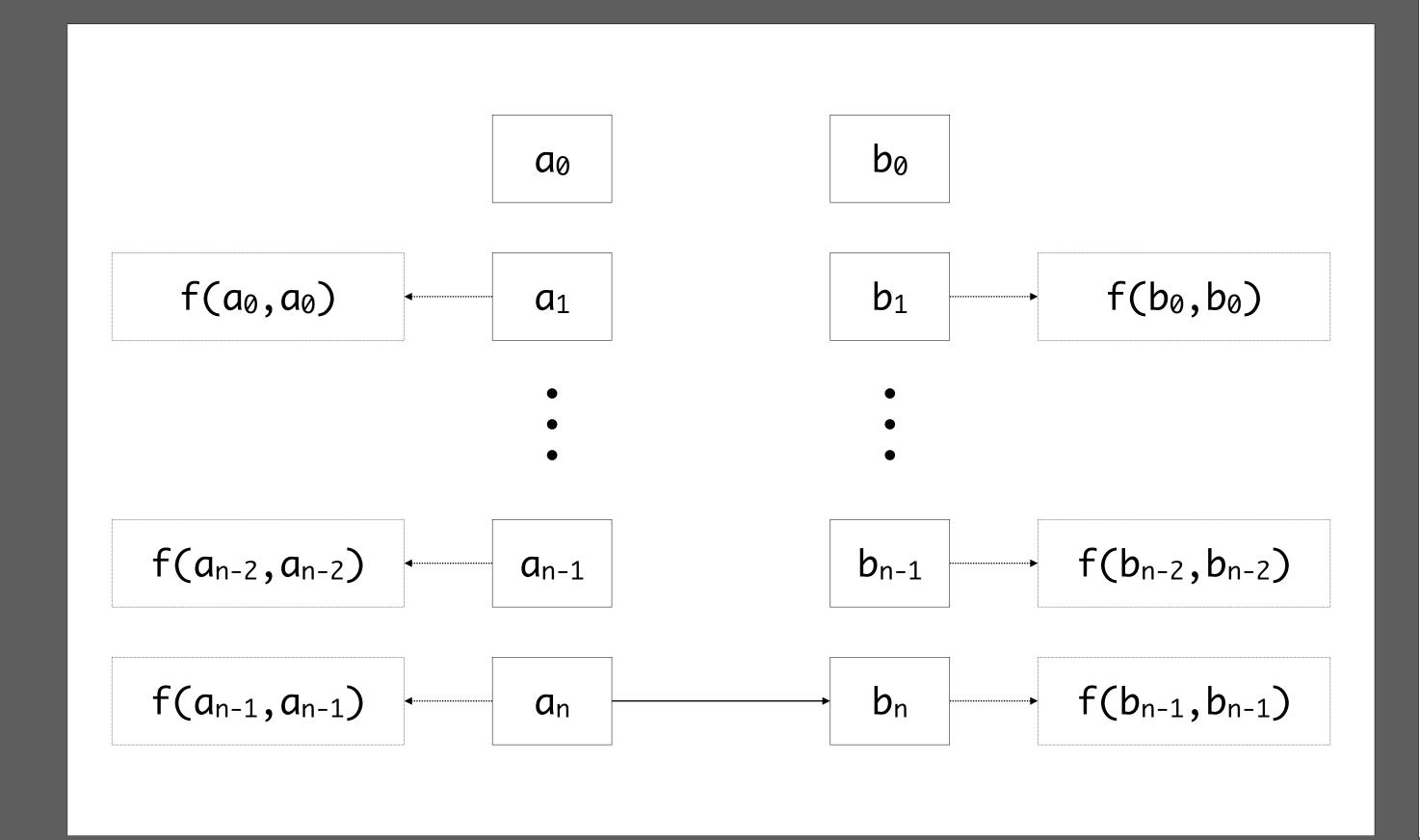
$$h(a_1, a_n)$$
, $h(b_0, b_0)$, ..., $f(b_{n-1}, b_{n-1})$, $a_n) = h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)$



$$a_n == b_n$$

$$f(a_{n-1}, a_{n-1}) == f(b_{n-1}, b_{n-1})$$

$$h(a_1, a_n)$$
, $h(b_0, b_0)$, ..., $f(b_{n-1}, b_{n-1})$, $a_n) = h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)$

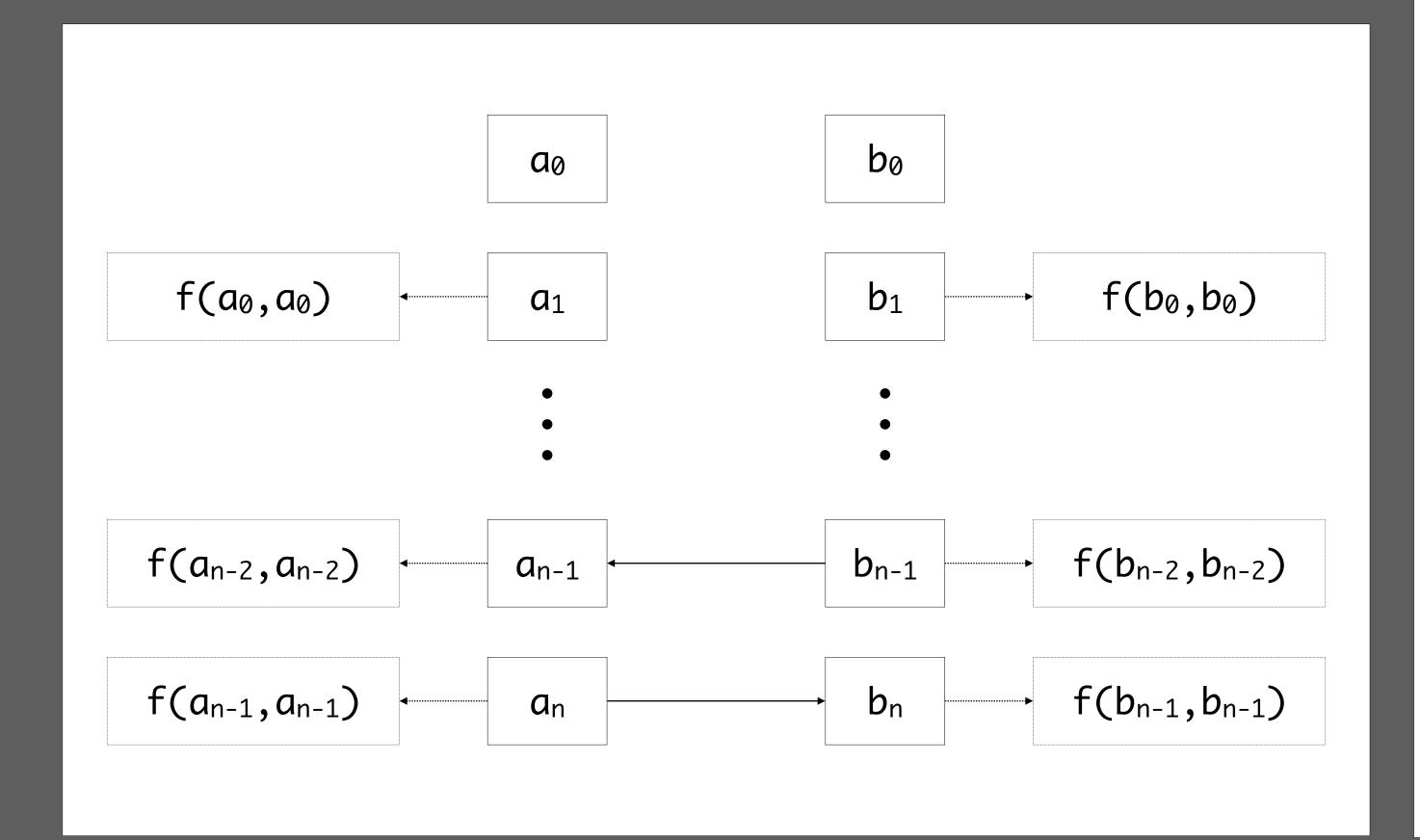


$$a_n == b_n$$

$$f(a_{n-1}, a_{n-1}) == f(b_{n-1}, b_{n-1})$$

$$a_{n-1} == b_{n-1} \qquad a_{n-1} == b_{n-1}$$

$$h(a_1, ..., a_n)$$
, $f(b_0, b_0)$, ..., $f(b_{n-1}, b_{n-1})$, $a_n) == h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)$

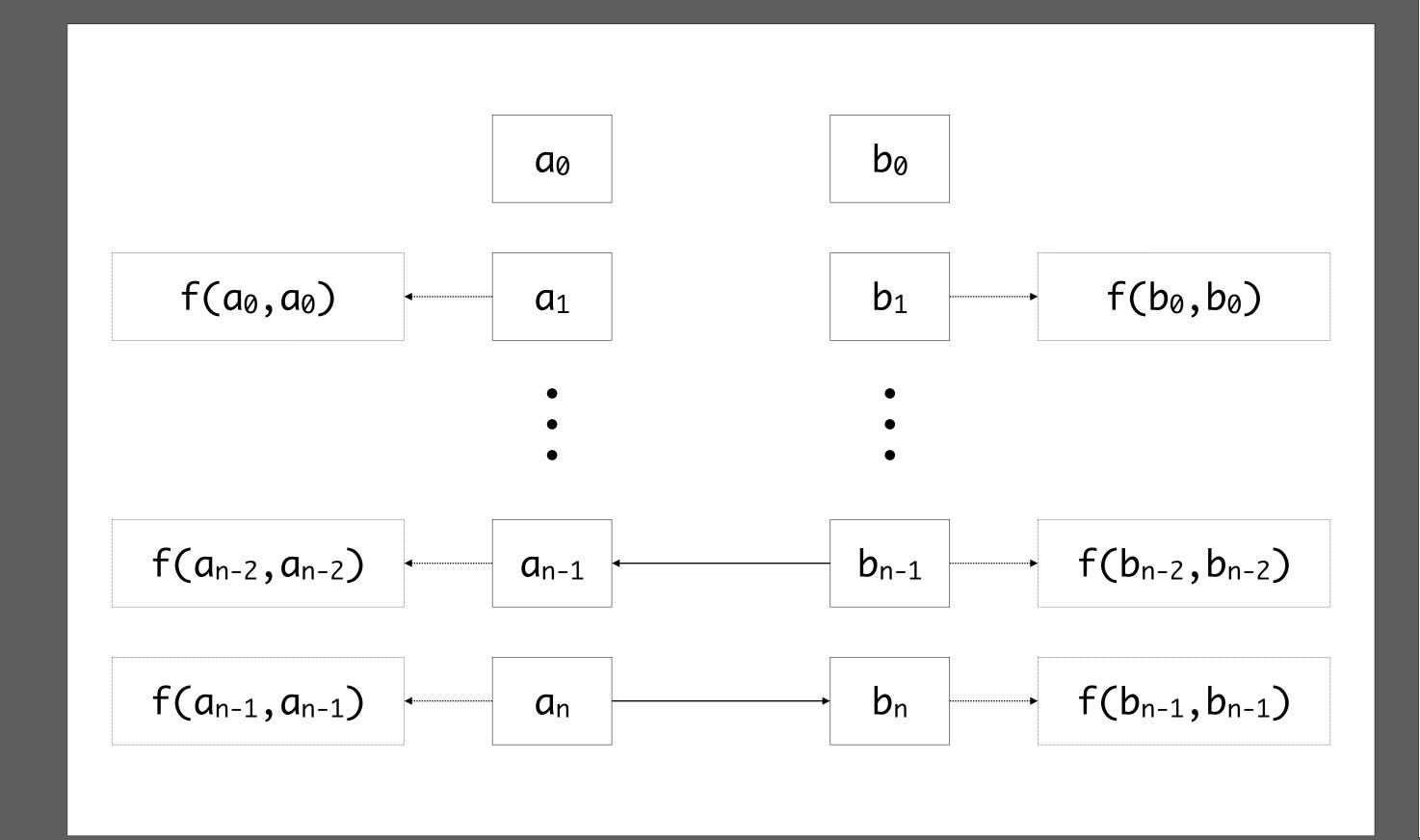


$$a_n == b_n$$

$$f(a_{n-1}, a_{n-1}) == f(b_{n-1}, b_{n-1})$$

$$a_{n-1} == b_{n-1} \qquad a_{n-1} == b_{n-1}$$

$$h(a_1, ..., a_n)$$
, $f(b_0, b_0)$, ..., $f(b_{n-1}, b_{n-1})$, $a_n) == h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)$



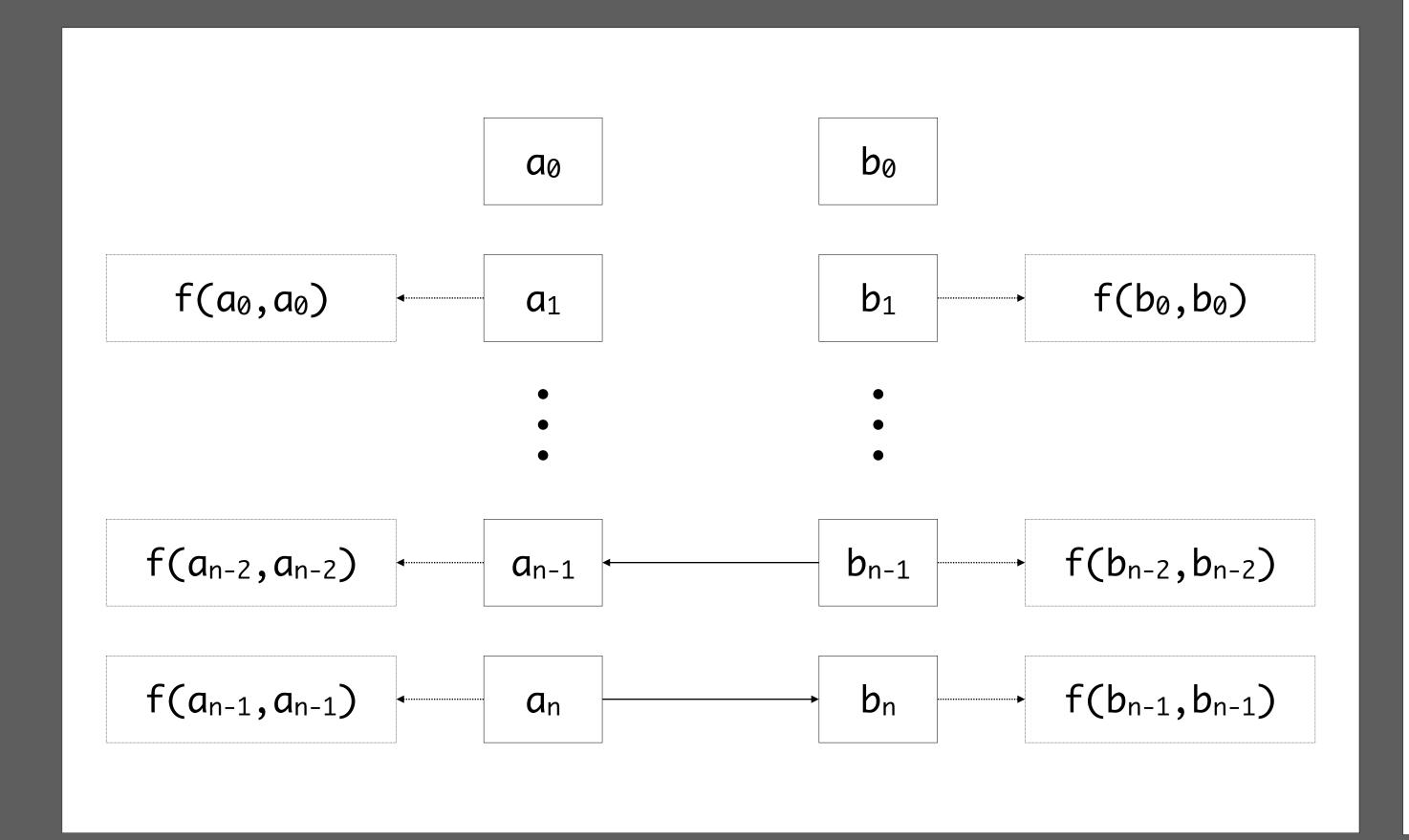
$$a_n == b_n$$

$$f(a_{n-1}, a_{n-1}) == f(b_{n-1}, b_{n-1})$$

$$a_{n-1} == b_{n-1} \qquad a_{n-1} == b_{n-1}$$

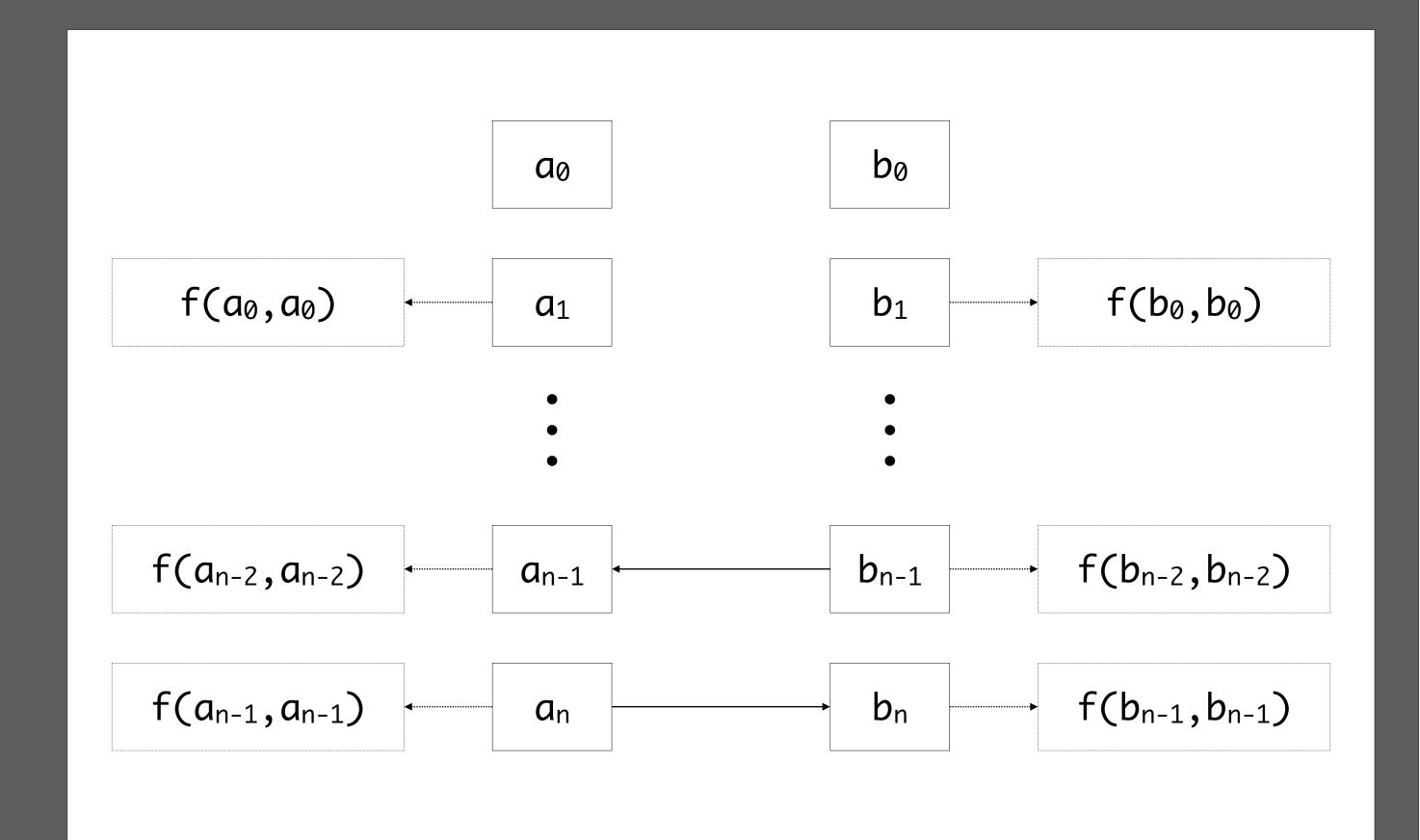
$$f(a_{n-2}, a_{n-2}) == f(b_{n-2}, b_{n-2})$$

$$h(a_1, a_n)$$
, $h(b_0, b_0)$, $h(b_{n-1}, b_{n-1})$, $h(b_0, b_0)$



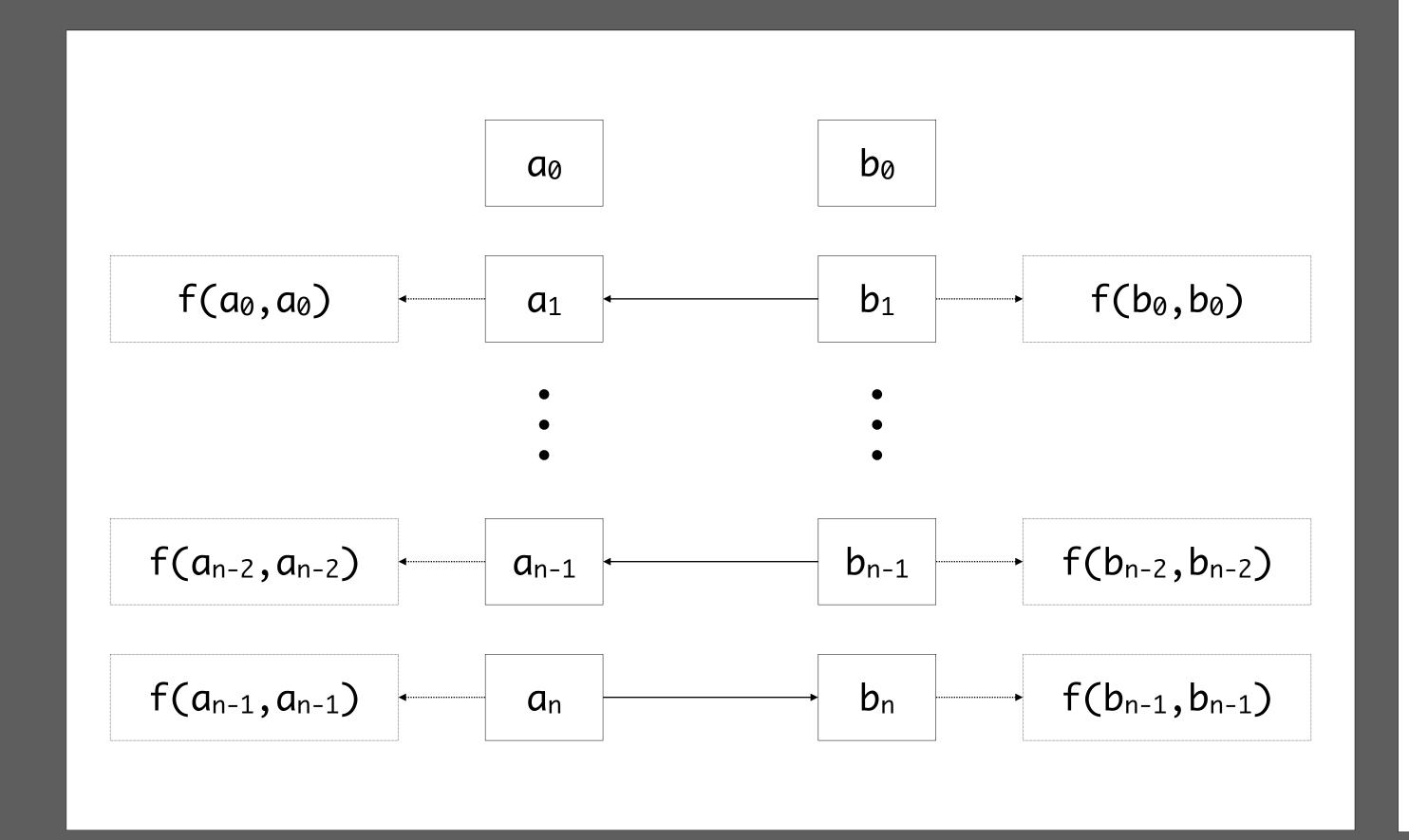
$$a_n == b_n$$
 $f(a_{n-1}, a_{n-1}) == f(b_{n-1}, b_{n-1})$
 $a_{n-1} == b_{n-1}$
 $a_{n-1} == b_{n-1}$
 $a_{n-2}, a_{n-2}) == f(b_{n-2}, b_{n-2})$
 \vdots

$$h(a_1, ..., a_n)$$
, $f(b_0, b_0)$, ..., $f(b_{n-1}, b_{n-1})$, $a_n) == h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)$



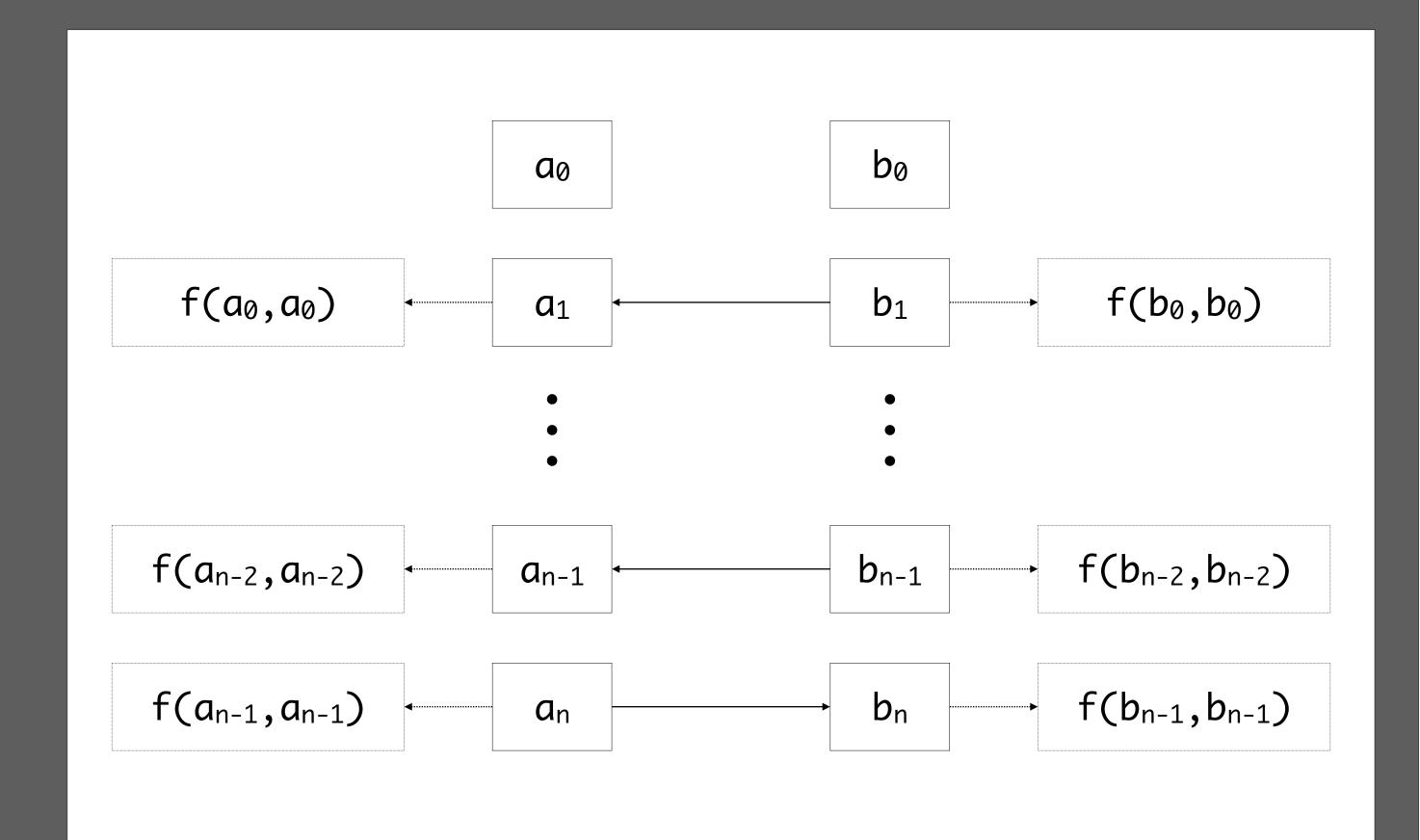
$$a_{n} == b_{n}$$
 $f(a_{n-1}, a_{n-1}) == f(b_{n-1}, b_{n-1})$
 $a_{n-1} == b_{n-1}$
 $a_{n-1} == b_{n-1}$
 $f(a_{n-2}, a_{n-2}) == f(b_{n-2}, b_{n-2})$
 \vdots
 $a_{1} == b_{1}$
 $a_{1} == b_{1}$

$$h(a_1, ..., a_n)$$
, $f(b_0, b_0)$, ..., $f(b_{n-1}, b_{n-1})$, $a_n) == h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)$



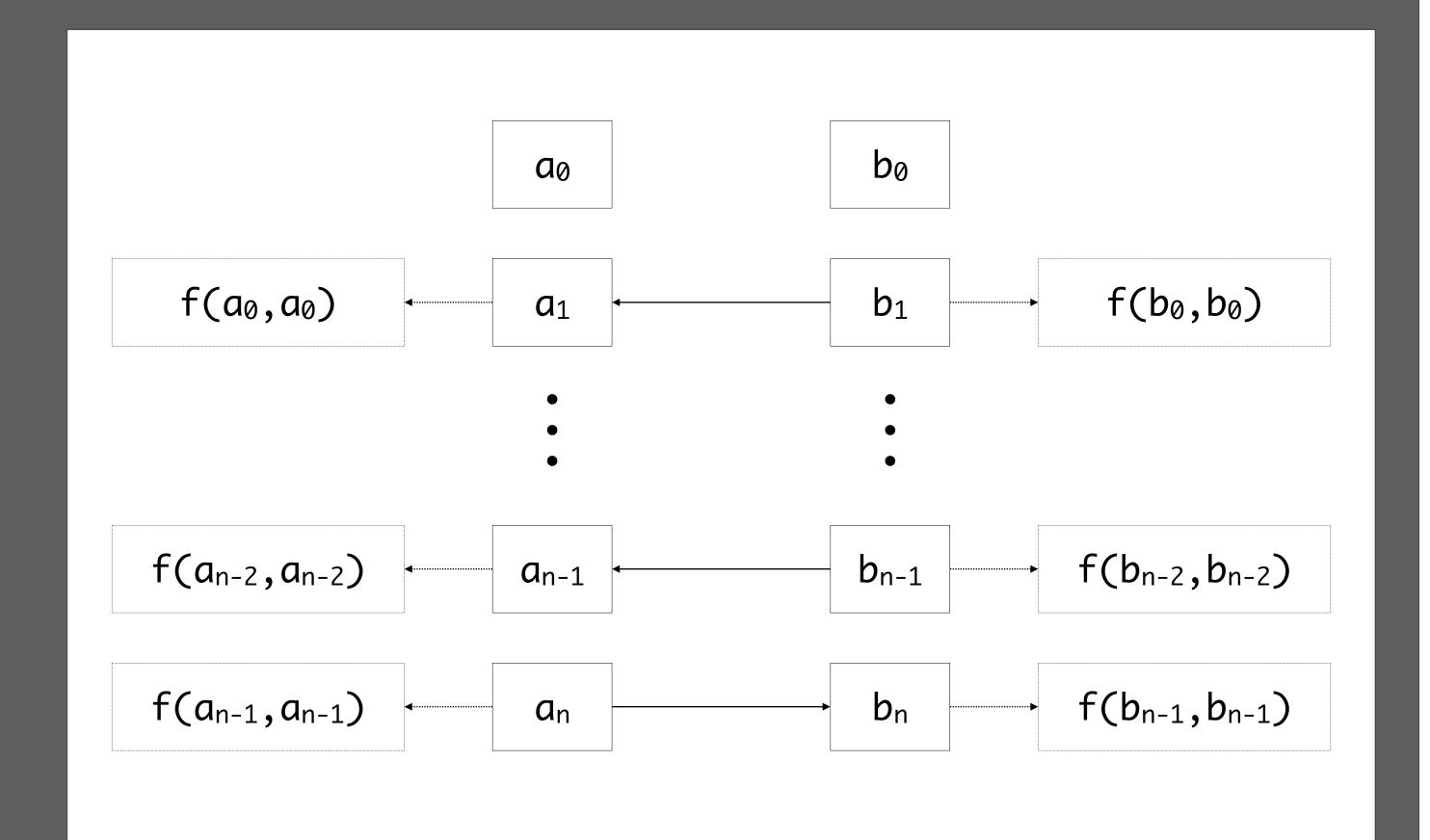
$$a_{n} == b_{n}$$
 $f(a_{n-1}, a_{n-1}) == f(b_{n-1}, b_{n-1})$
 $a_{n-1} == b_{n-1}$
 $a_{n-1} == b_{n-1}$
 $f(a_{n-2}, a_{n-2}) == f(b_{n-2}, b_{n-2})$
 \vdots
 $a_{1} == b_{1}$
 $a_{1} == b_{1}$

$$h(a_1, ..., a_n)$$
, $f(b_0, b_0)$, ..., $f(b_{n-1}, b_{n-1})$, $a_n) = h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)$



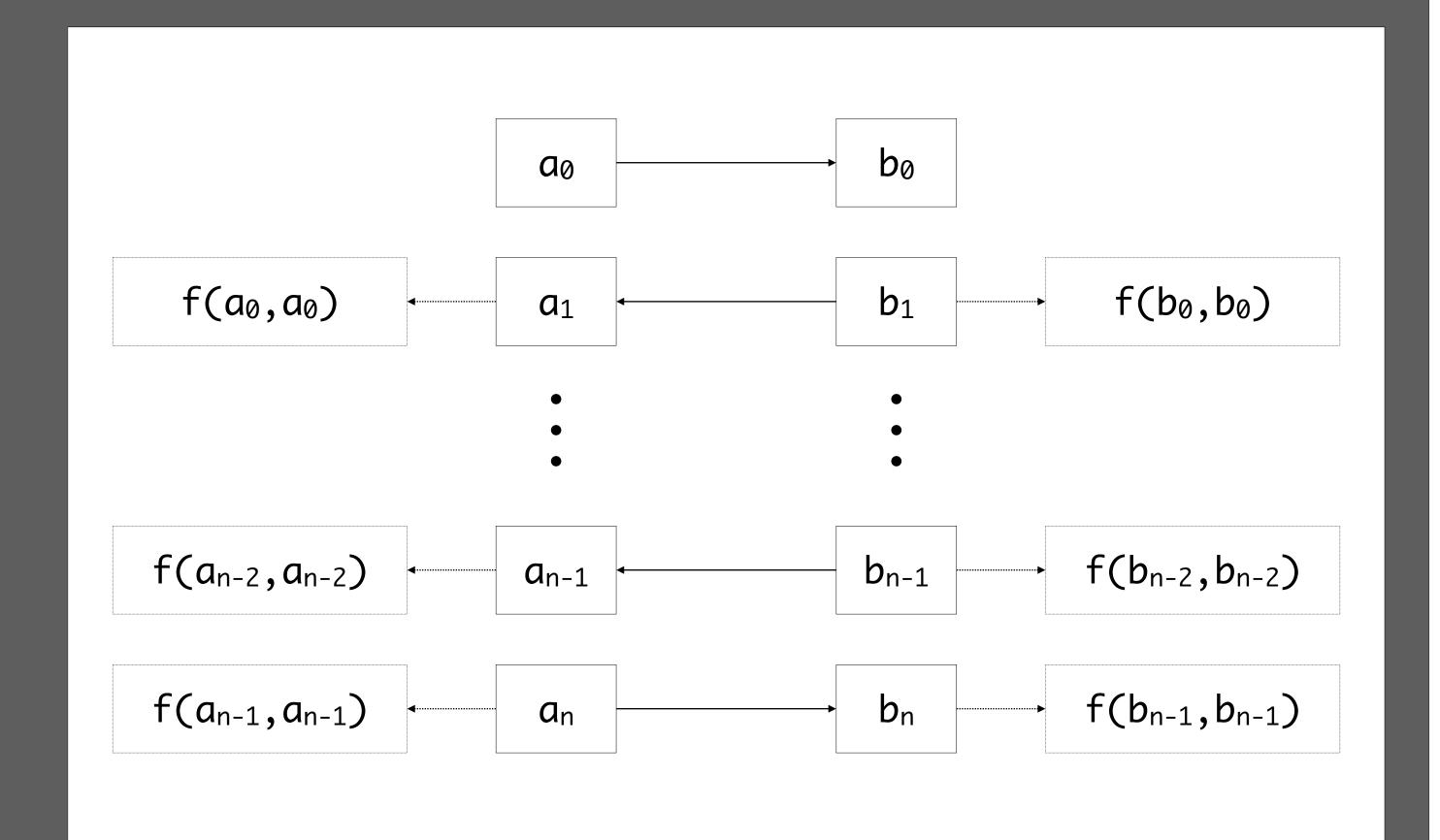
$$a_{n} == b_{n}$$
 $f(a_{n-1}, a_{n-1}) == f(b_{n-1}, b_{n-1})$
 $a_{n-1} == b_{n-1}$
 $a_{n-1} == b_{n-1}$
 $f(a_{n-2}, a_{n-2}) == f(b_{n-2}, b_{n-2})$
 \vdots
 $a_{1} == b_{1}$
 $a_{1} == b_{1}$
 $f(a_{0}, a_{0}) == f(b_{0}, b_{0})$

$$h(a_1, a_n)$$
, $h(b_0, b_0)$, ..., $f(b_{n-1}, b_{n-1})$, $a_n) = h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)$



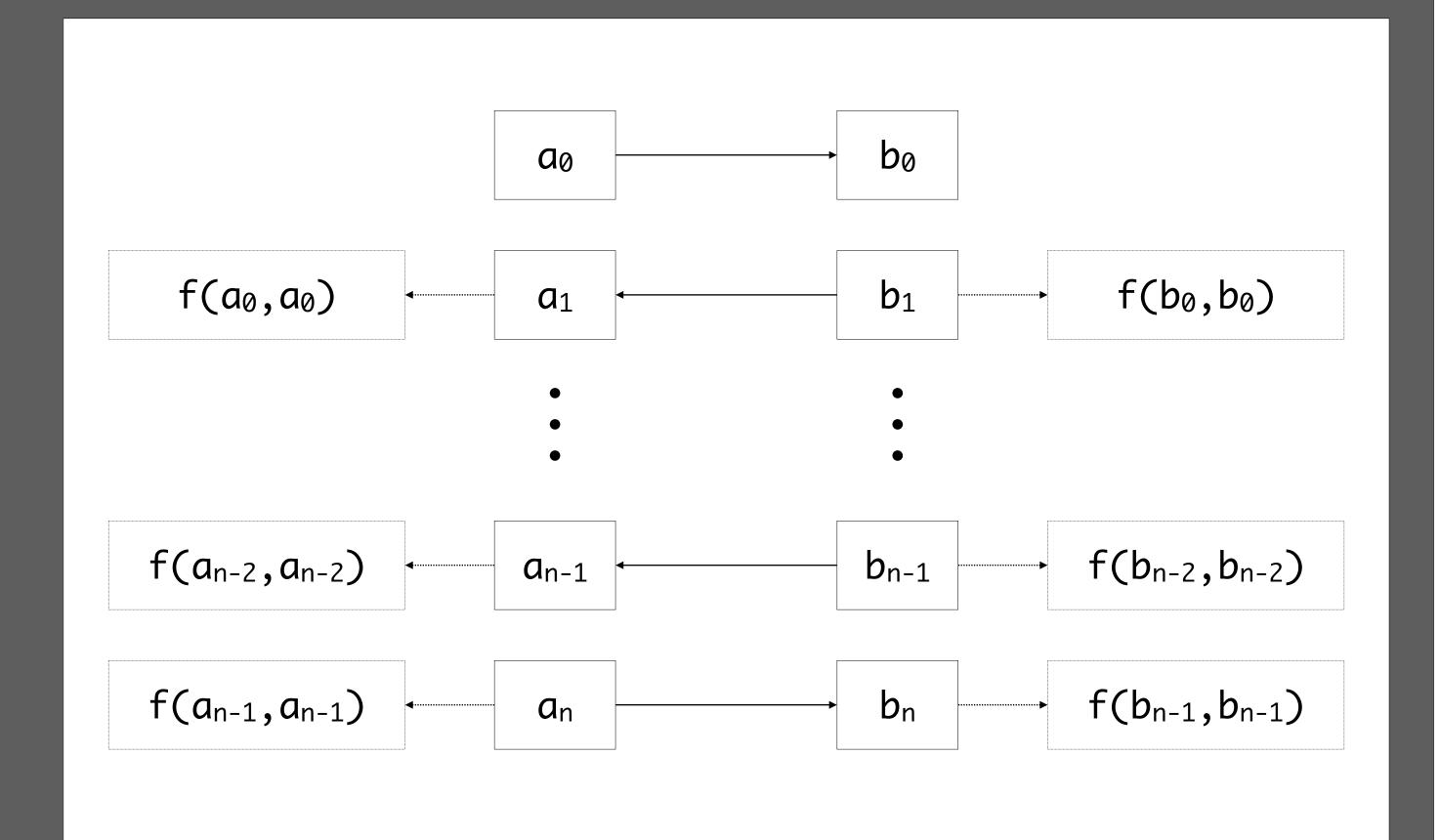
$$a_{n} == b_{n}$$
 $f(a_{n-1}, a_{n-1}) == f(b_{n-1}, b_{n-1})$
 $a_{n-1} == b_{n-1}$
 $a_{n-1} == b_{n-1}$
 $f(a_{n-2}, a_{n-2}) == f(b_{n-2}, b_{n-2})$
 \vdots
 $a_{1} == b_{1}$
 $a_{1} == b_{1}$
 $a_{1} == b_{1}$
 $a_{1} == b_{1}$
 $a_{2} == b_{3}$
 $a_{3} == b_{4}$

$$h(a_1, ..., a_n)$$
, $f(b_0, b_0)$, ..., $f(b_{n-1}, b_{n-1})$, $a_n) = h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)$



$$a_{n} == b_{n}$$
 $f(a_{n-1}, a_{n-1}) == f(b_{n-1}, b_{n-1})$
 $a_{n-1} == b_{n-1}$
 $a_{n-1} == b_{n-1}$
 $a_{n-1} == b_{n-1}$
 $f(a_{n-2}, a_{n-2}) == f(b_{n-2}, b_{n-2})$
 \vdots
 $a_{1} == b_{1}$
 $a_{1} == b_{1}$
 $a_{1} == b_{1}$
 $a_{1} == b_{1}$
 $a_{2} == b_{3}$
 $a_{3} == b_{4}$

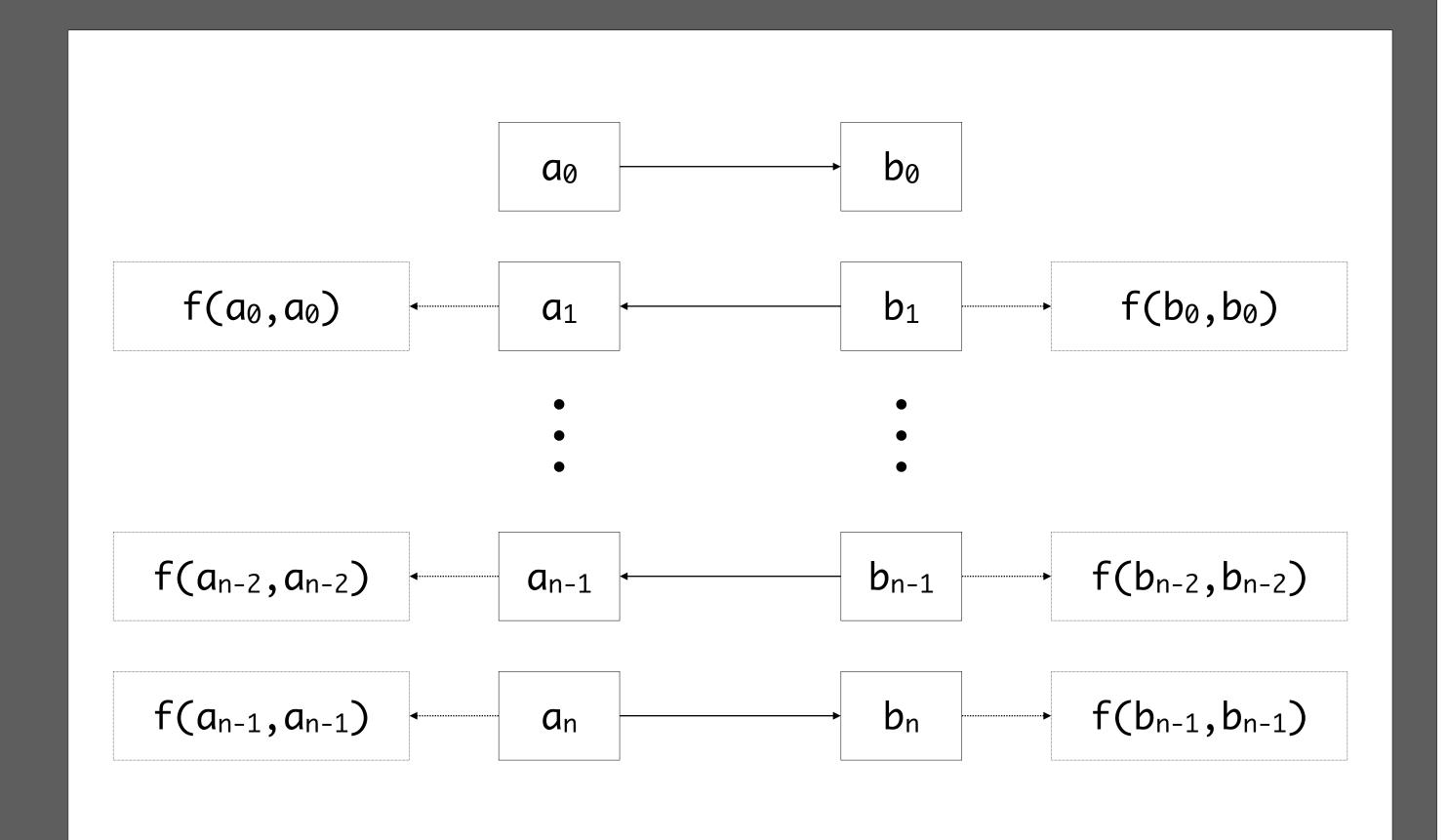
$$h(a_1, ..., a_n)$$
, $f(b_0, b_0)$, ..., $f(b_{n-1}, b_{n-1})$, $a_n) = h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)$



$$a_{n} == b_{n}$$
 $f(a_{n-1}, a_{n-1}) == f(b_{n-1}, b_{n-1})$
 $a_{n-1} == b_{n-1}$
 $a_{n-1} == b_{n-1}$
 $f(a_{n-2}, a_{n-2}) == f(b_{n-2}, b_{n-2})$
 \vdots
 $a_{1} == b_{1}$
 $a_{1} == b_{1}$
 $a_{1} == b_{1}$
 $a_{1} == b_{1}$
 $a_{2} == b_{3}$
 $a_{3} == b_{4}$

How about occurrence checks?

$$h(a_1, a_n)$$
, $h(b_0, b_0)$, $h(b_{n-1}, b_{n-1})$, $h(b_0, a_0)$, $h(b_0, a_0)$, $h(b_0, a_0)$, $h(b_0, b_0)$



$$a_{n} == b_{n}$$
 $f(a_{n-1}, a_{n-1}) == f(b_{n-1}, b_{n-1})$
 $a_{n-1} == b_{n-1}$
 $a_{n-1} == b_{n-1}$
 $f(a_{n-2}, a_{n-2}) == f(b_{n-2}, b_{n-2})$
 \vdots
 $a_{1} == b_{1}$
 $a_{1} == b_{1}$
 $f(a_{0}, a_{0}) == f(b_{0}, b_{0})$
 $a_{0} == b_{0}$
 $a_{0} == b_{0}$

How about occurrence checks? Postpone!

Main idea

Main idea

- Represent unifier as graph

Main idea

- Represent unifier as graph
- One variable represent equivalence class

Main idea

- Represent unifier as graph
- One variable represent equivalence class
- Replace substitution by union & find operations

Main idea

- Represent unifier as graph
- One variable represent equivalence class
- Replace substitution by union & find operations
- Testing equality becomes testing node identity

Main idea

- Represent unifier as graph
- One variable represent equivalence class
- Replace substitution by union & find operations
- Testing equality becomes testing node identity

Optimizations

Main idea

- Represent unifier as graph
- One variable represent equivalence class
- Replace substitution by union & find operations
- Testing equality becomes testing node identity

Optimizations

- Path compression make recurring lookups fast

Main idea

- Represent unifier as graph
- One variable represent equivalence class
- Replace substitution by union & find operations
- Testing equality becomes testing node identity

Optimizations

- Path compression make recurring lookups fast
- Tree balancing keeps paths short

Main idea

- Represent unifier as graph
- One variable represent equivalence class
- Replace substitution by union & find operations
- Testing equality becomes testing node identity

Optimizations

- Path compression make recurring lookups fast
- Tree balancing keeps paths short

Complexity

Main idea

- Represent unifier as graph
- One variable represent equivalence class
- Replace substitution by union & find operations
- Testing equality becomes testing node identity

Optimizations

- Path compression make recurring lookups fast
- Tree balancing keeps paths short

Complexity

- Linear in space and almost linear (inverse Ackermann) in time

Main idea

- Represent unifier as graph
- One variable represent equivalence class
- Replace substitution by union & find operations
- Testing equality becomes testing node identity

Optimizations

- Path compression make recurring lookups fast
- Tree balancing keeps paths short

Complexity

- Linear in space and almost linear (inverse Ackermann) in time
- Easy to extract triangular unifier from graph

Main idea

- Represent unifier as graph
- One variable represent equivalence class
- Replace substitution by union & find operations
- Testing equality becomes testing node identity

Optimizations

- Path compression make recurring lookups fast
- Tree balancing keeps paths short

Complexity

- Linear in space and almost linear (inverse Ackermann) in time
- Easy to extract triangular unifier from graph
- Postpone occurrence checks to prevent traversing (potentially) large terms

Conclusion

What is the meaning of constraints?

- Formally described by constraint semantics

- Formally described by constraint semantics
- Semantics classifies solutions, but do not compute them

- Formally described by constraint semantics
- Semantics classifies solutions, but do not compute them
- Semantics is expressed in terms of other theories

- Formally described by constraint semantics
- Semantics classifies solutions, but do not compute them
- Semantics is expressed in terms of other theories
 - Syntactic equality

What is the meaning of constraints?

- Formally described by constraint semantics
- Semantics classifies solutions, but do not compute them
- Semantics is expressed in terms of other theories
 - Syntactic equality
 - Scope graph resolution

What is the meaning of constraints?

- Formally described by constraint semantics
- Semantics classifies solutions, but do not compute them
- Semantics is expressed in terms of other theories
 - Syntactic equality
 - Scope graph resolution

What is the meaning of constraints?

- Formally described by constraint semantics
- Semantics classifies solutions, but do not compute them
- Semantics is expressed in terms of other theories
 - Syntactic equality
 - Scope graph resolution

What techniques can we use to implement solvers?

Constraint simplification

What is the meaning of constraints?

- Formally described by constraint semantics
- Semantics classifies solutions, but do not compute them
- Semantics is expressed in terms of other theories
 - Syntactic equality
 - Scope graph resolution

- Constraint simplification
 - Simplification rules

What is the meaning of constraints?

- Formally described by constraint semantics
- Semantics classifies solutions, but do not compute them
- Semantics is expressed in terms of other theories
 - Syntactic equality
 - Scope graph resolution

- Constraint simplification
 - Simplification rules
 - Depends on built-in procedures to unify or resolve names

What is the meaning of constraints?

- Formally described by constraint semantics
- Semantics classifies solutions, but do not compute them
- Semantics is expressed in terms of other theories
 - Syntactic equality
 - Scope graph resolution

- Constraint simplification
 - Simplification rules
 - Depends on built-in procedures to unify or resolve names
- Unification

What is the meaning of constraints?

- Formally described by constraint semantics
- Semantics classifies solutions, but do not compute them
- Semantics is expressed in terms of other theories
 - Syntactic equality
 - Scope graph resolution

- Constraint simplification
 - Simplification rules
 - ► Depends on built-in procedures to unify or resolve names
- Unification
 - Unifiers make terms with variables equal

What is the meaning of constraints?

- Formally described by constraint semantics
- Semantics classifies solutions, but do not compute them
- Semantics is expressed in terms of other theories
 - Syntactic equality
 - Scope graph resolution

- Constraint simplification
 - Simplification rules
 - ► Depends on built-in procedures to unify or resolve names
- Unification
 - Unifiers make terms with variables equal
 - Unification computes most general unifiers

What is the meaning of constraints?

- Formally described by constraint semantics
- Semantics classifies solutions, but do not compute them
- Semantics is expressed in terms of other theories
 - Syntactic equality
 - Scope graph resolution

What techniques can we use to implement solvers?

- Constraint simplification
 - Simplification rules
 - ► Depends on built-in procedures to unify or resolve names
- Unification
 - Unifiers make terms with variables equal
 - Unification computes most general unifiers

What is the relation between solver and semantics?

What is the meaning of constraints?

- Formally described by constraint semantics
- Semantics classifies solutions, but do not compute them
- Semantics is expressed in terms of other theories
 - Syntactic equality
 - Scope graph resolution

What techniques can we use to implement solvers?

- Constraint simplification
 - Simplification rules
 - ► Depends on built-in procedures to unify or resolve names
- Unification
 - Unifiers make terms with variables equal
 - Unification computes most general unifiers

What is the relation between solver and semantics?

- Soundness: any solution satisfies the semantics

What is the meaning of constraints?

- Formally described by constraint semantics
- Semantics classifies solutions, but do not compute them
- Semantics is expressed in terms of other theories
 - Syntactic equality
 - Scope graph resolution

What techniques can we use to implement solvers?

- Constraint simplification
 - Simplification rules
 - ► Depends on built-in procedures to unify or resolve names
- Unification
 - Unifiers make terms with variables equal
 - Unification computes most general unifiers

What is the relation between solver and semantics?

- Soundness: any solution satisfies the semantics
- Completeness: if a solution exists, the solver finds it

What is the meaning of constraints?

- Formally described by constraint semantics
- Semantics classifies solutions, but do not compute them
- Semantics is expressed in terms of other theories
 - Syntactic equality
 - Scope graph resolution

What techniques can we use to implement solvers?

- Constraint simplification
 - Simplification rules
 - ► Depends on built-in procedures to unify or resolve names
- Unification
 - Unifiers make terms with variables equal
 - Unification computes most general unifiers

What is the relation between solver and semantics?

- Soundness: any solution satisfies the semantics
- Completeness: if a solution exists, the solver finds it
- Principality: the solver computes most general solutions

Except where otherwise noted, this work is licensed under

