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This Lecture

Specification of syntax definition from which we can derive parsers







What is Syntax?

In linguistics, syntax (/sintaeks/['12]) is the set of rules, principles, and
processes that govern the structure of sentences in a given language,
specifically word order and punctuation.

The term syntax is also used to refer to the study of such principles
and processes.sl

The goal of many syntacticians is to discover the syntactic rules
common to all languages.

In mathematics, syntax refers to the rules governing the behavior of
mathematical systems, such as formal languages used in logic. (See
logical syntax.)

The word syntax comes from Ancient Greek: ocuvtacic “"coordination”,
which consists of ouv syn, "together," and taélg taxis, "an ordering".

https://en.wikipedia.org/wiki/Syntax
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Syntax (Programming Languages)

In computer science, the syntax of a computer language is the set of
rules that defines the combinations of symbols that are considered to be
a correctly structured document or fragment in that language.

This applies both to programming languages, where the document
represents source code, and markup languages, where the document

represents data.

The syntax of a language defines its surface form.l

Text-based computer languages are based on sequences of characters,
while visual programming languages are based on the spatial layout and
connections between symbols (which may be textual or graphical).

Documents that are syntactically invalid are said to have a syntax error.

https://en.wikipedia.org/wiki/Syntax_(programming_languages)
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That Govern the Structure

Syntax

- The set of rules, principles, and processes that govern the structure
of sentences in a given language

- The set of rules that defines the combinations of symbols that are

considered to be a correctly structured document or fragment in that
language

How to describe such a set of rules?



The Structure of
Programs



What do we call the elements of programs?

#include <stdio.h>
int power(int m, int n);

/* test power function */
main() {
int 1;
for (1 =0; 1 < 10; ++1)
printf("%d %d %d\n", 1, power(Z2, 1), power(-3, 1));
return 0;

¥

/* power: raise base to n-th power; n >= 0 */
1nt power(int base, int n) {

int 1, p;

p=1;

for (1 =1; 1 <= n; ++1)
p =p * base;

return p;

¥



What kind of program element is this?

#include <stdio.h>
int power(int m, int n);

/* test power function */

main() {
int 1;
for (1 =0; 1 < 10; ++1)
printf("%d %d %d\n", 1, power(Z2, 1), power(-3, 1)); ngram
return 0; o |
1 Compilation Unit

/* power: raise base to n-th power; n >= 0 */
1nt power(int base, int n) {

int 1, p;

p =1,

for (1 =1; 1 <= n; ++1)
p =p * base;

return p;

¥



What kind of program element is this?

#1include <stdio.h>

int power(int m, int n);

/* test power function */
main() {
int 1;
for (1 =0; 1 < 10; ++1)
printf("%d %d %d\n", 1, power(Z2, 1), power(-3, 1));
return 0;

¥

/* power: raise base to n-th power; n >= 0 */
1nt power(int base, int n) {

int 1, p;

p =1,

for (1 =1; 1 <= n; ++1)
p =p * base;

return p;

¥

Preprocessor Directive

10



What kind of program element is this?

#1include <stdio.h>

int power(int m, int n);

/* test power function */
main() {
int 1;
for (1 =0; 1 < 10; ++1)
printf("%d %d %d\n", 1, power(Z2, 1), power(-3, 1));
return 0;

¥

/* power: raise base to n-th power; n >= 0 */
1nt power(int base, int n) {

int 1, p;

p =1,

for (1 =1; 1 <= n; ++1)
p =p * base;

return p;

¥

Function Declaration
Function Prototype
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What kind of program element is this?

#1include <stdio.h>

int power(int m, int n);

/* test power function */

main
int 1;
for (1 =0; 1 < 10; ++1)
printf("%d %d %d\n", 1, power(2, 1), power(-3, 1));
return 0;

¥

/* power: raise base to n-th power; n >= 0 */
1nt power(int base, int n) {

int 1, p;

p =1,

for (1 =1; 1 <= n; ++1)
p =p * base;

return p;

¥

Comment
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What kind of program element is this?

#include <stdio.h>
int power(int m, int n);

/* test power function */

main() {
int 1;
for (1 =0; 1 < 10; ++1)

printf("%d %d %d\n", 1, power(2, 1), power(-3, 1));
return 0;

¥

/* power: raise base to n-th power; n >= 0 */
1nt power(int base, int n) {

int 1, p;

p =1,

for (1 =1; 1 <= n; ++1)
p =p * base;

return p;

¥

Function Definition
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What kind of program element is this?

#include <stdio.h>
int power(int m, int n);

/* test power function */
main
Variable Declaration
for (1 =0; 1 < 10; ++1)
printf("%d %d %d\n", 1, power(2, 1), power(-3, 1));
return 0;

¥

/* power: raise base to n-th power; n >= 0 */
1nt power(int base, int n) {

int 1, p;

p =1,

for (1 =1; 1 <= n; ++1)
p =p * base;

return p;

¥
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I What kind of program element is this?

#1include <stdio.h>

int power(int m, int n);

/* test power function */

main() {
int 1;
for (1 =0; 1 < 10; ++1)
printf("%d %d %d\n", i, power(2, i), power(-3, i)); Statement
return 0,
} For Loop

/* power: raise base to n-th power; n >= 0 */
1nt power(int base, int n) {

int 1, p;

p =1,

for (1 =1; 1 <= n; ++1)
p =p * base;

return p;

¥



#1include <stdio.h>

What kind of program element is this?

int power(int m, int n);

/* test power function */

main() {
int 1;
for i = 0Q: 1 < 1@ ++1

, 1, power(2, 1), power(-3, i)); Statement
Function Call

/* power: raise base to n-th power; n >= 0 */

1nht power(int base,

int n) {

int 1, p;

p =1,

for (1 =1; 1 <= n; ++1)
p =p * base;

return p;

¥
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What kind of program element is this?

#include <stdio.h>
int power(int m, int n);

/* test power function */

main() {
int 1;
for (i = 0;[i < 10] ++i) Expression
printf("%d %d %d\n", 1, power(2, 1), power(-3, 1));
return 0;

¥

/* power: raise base to n-th power; n >= 0 */
1nt power(int base, int n) {

int 1, p;

p =1,

for (1 =1; 1 <= n; ++1)
p =p * base;

return p;

¥
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What kind of program element is this?

#include <stdio.h>
int power(int m, int n);

/* test power function */
main() {
int 1;
for (1 =0; 1 < 10; ++1)
printf("%d %d %d\n", 1, power(Z2, 1), power(-3, 1));
return 0;

¥

/* power: rgise bgse to n-th power; n >= 0 */
int power(int base| int n) { Formal Function Parameter
int 1, p;
p=1;
for (1 =1; 1 <= n; ++1)
p =p * base;
return p;

¥
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What kind of program element is this?

#include <stdio.h>
int power(int m, int n);

/* test power function */
main() {
int 1;
for (1 =0; 1 < 10; ++1)
printf("%d %d %d\n", 1, power(Z2, 1), power(-3, 1));
return 0;

¥

/* power: rgise base to n-th power; n >= 0 */
1nt powerbase, int n) {
int 1, p;
p = 1;
for (1 =1; 1 <= n; ++1)
p =p * base;
return p;

¥

Type
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Syntactic Categories

Preprocessor Directive For Loop

Function Declaration L .
Compilation Unit

Function Prototype

Program .
Statement J Function Call
Variable Declaration
Function Definition Type  Formal Function

Expression Parameter

Programs consist of different kinds of elements

20



Hierarchy of Syntactic Categories

Program

Compilation Unit

Preprocessor Function Function Declaration
Directive Definition Function Prototype
Variable
Declaration Statement  Type
. Formal Function
EXpression For Loop

Parameter

Function Call

Some kinds of constructs are contained in others

21



modern
compiler
iImplementation

in ML

andrew w. appel

The Tiger Language

Example language used in lectures

Documentation
https://www.lrde.epita.fr/~tiger/tiger.ntml

Spoofax project
https://github.com/MetaBorgCube/metaborg-tiger
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let
var N := 8
type intArray = array of 1int
var row := intArray[N] of 0
var col := intArray[N] of 0
var diagl := intArray[N + N - 1] of 0
var diag2 := intArray[N + N - 1] of 0
function printboard() = (
for 1 := 0 to N -1 do (
for 3 :=0 to N - 1 do
print(if col[1] = j then
"o
else
R -
print("\n")
DK
print("\n"))
function try(c : 1int) = (
1f ¢ = N then

printboard()
else
for r := 0 to N - 1 do
1f row[r] = 0 & diagl[r + c] = 0 & diag2[r + 7 - c] = 0 then (

row[r] := 1;
diagl[r + c] := 1;
diag2[r + 7 - c] := 1;
col[c] := r;
try(c + 1);
row[r] := 0;

diagl[r + c] := 0;
diag2[r + 7 - c] := 0))
1n
try(0)
end

A Tiger program that solves
the n-queens problem

23



let
var N := 8
type intArray = array of 1int

var diagZ := intArray[N + N - 1] of 0

function printboard() = (
for 1 := 0 to N - 1 do (
for 3 :=0 to N - 1 do
print(i1f col[1] = J then
"o
else
R
print("\n")))
function try(c : 1nt) = (
1f ¢ = N then
printboard()
else

for r := 0 to N - 1 do

1f row[r] = 0 & diagl[r + c] = 0 then (

diagZ[r + 7 - c] := 1;
try(c + 1);))
1n
try(0)
end

A mutilated n-queens Tiger

program with ‘redundant’
elements removed

What are the syntactic
categories of Tiger?

What are the language
constructs of Tiger called?
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let
var N := 8
type intArray = array of 1int

var diagZ := intArray[N + N - 1] of 0

function printboard() = (
for 1 :=0 to N -1 do (
for 3 :=0 to N - 1 do
print(i1f col[1] = J then
"o
else
R -
print("\n")))
function try(c : int) = (
1f ¢ = N then
printboard()
else
for r :=0 to N - 1 do

1f row[r] = 0 & diagl[r + c] = @ then (

diag2[r + 7 - c] := 1;
tryCc + 1);))
1n
try(0)
end

Program
EXpression

Let Binding
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let

Variable Declaration

ype 1ntArray = array ot 1n
var diagZ := intArray[N + N - 1] of 0
function printboard() = (
for 1 := 0 to N - 1 do (
for 3 :=0 to N - 1 do
print(i1f col[1] = J then
"o
else
R
print("\n")))
function try(c : 1nt) = (
1f ¢ = N then
printboard()

else
for r :=0 to N - 1 do

1f row[r] = 0 & diagl[r + c] = 0 then (
diag2[r + 7 - c] := 1;
try(Cc + 1);))
1n
try(0)
end



type intArray = array of int Type Declaration
var diagZ := intArray[N + N - 1] of 0

function printboard() = (
for 1 := 0 to N - 1 do (
for 3 :=0 to N - 1 do
print(i1f col[1] = J then
"o
else
R
print("\n")))
function try(c : 1nt) = (
1f ¢ = N then
printboard()
else
for r := 0 to N - 1 do
1f row[r] = 0 & diagl[r + c] = 0 then (
diag2[r + 7 - c] := 1;
tryCc + 1)3))
1n
try(0)
end

27



let

var N := 8
type intArray = Type Expression
var diagZ := intArray|[N + N - 1] of 0

function printboard() = (
for 1 := 0 to N - 1 do (
for 3 :=0 to N - 1 do
print(i1f col[1] = J then
"o
else
R
print("\n")))
function try(c : 1nt) = (
1f ¢ = N then
printboard()
else
for r := 0 to N - 1 do
1f row[r] = 0 & diagl[r + c] = 0 then (
diagZ[r + 7 - c] := 1;
try(c + 1);))
1n
try(0)
end



let

var N := 8

type intArray = array of 1int Expression
var diag2 :=[TntArrayN + N - 13 of 0

function printboard() = Array Initialization

for 1 := 0 to N - 1 do (
for 3 :=0 to N - 1 do
print(i1f col[1] = J then
"o
else
R
print("\n")))
function try(c : 1nt) = (
1f ¢ = N then
printboard()
else
for r := 0 to N - 1 do
1f row[r] = 0 & diagl[r + c] = 0 then (
diagZ[r + 7 - c] := 1;
try(c + 1);))
1n
try(0)
end



let

var N := 8
type intArray = array of 1int
var diagZ := intArray[N + N - 1] of 0
function printboard() = (
for 1 := 0 to N - 1 do (
for 3 :=0 to N - 1 do
print(i1f col[1] = J then

"o
else
R
print("\n")))
unction try(c : 1nt
1f ¢ = N then
printboard()
else
for r := 0 to N - 1 do
1f row[r] = 0 & diagl[r + c] = 0 then (
diag2[r + 7 - c] := 1;
tryCc + 1)3))

1n
try(0)
end

Function Definition

30



let
var N := 8
type intArray = array of 1int

var diagZ := intArray[N + N - 1] of 0

function ) = (
for 1 := 0 to N - 1 do (

for 3 :=0 to N - 1 do
print(i1f col[1] = J then
"o
else
R
print("\n")))
function try(c : 1nt) = (
1f ¢ = N then
printboard()
else
for r := 0 to N - 1 do

1f row[r] = 0 & diagl[r + c] = 0 then (

diagZ[r + 7 - c] := 1;
tryCc + 1)3))
1N
try(0)
end

Function Name

31



let
var N := 8

type intArray = array of 1int

var diag?

:= 1ntArray[N + N - 1] of 0

function printboard =

for 1

for j
bri

=0 to N -1

=0 to N -
nt(1f col[1]
Oll

else

)

print("\n")))

function try(c : 1int

1f ¢ = N then

printboard()
else
for r :=0 to N - 1 do

1f row[r] = 0 & diagl[r + c] = 0 then (
diag2[r + 7 - c] := 1;
try(c + 1);))

1n
try(0)
end

Function Body
EXpression

For Loop
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let
var N := 8
type intArray = array of 1int
var diagZ := intArray[N + N - 1] of 0
function printboard() = (
for 1 := 0 to N - 1 do
for 7 := 0 to N -
print(1f col[1]
"o
else
R
print("\n")))
function try(c : 1int
1f ¢ = N then
printboard()
else
for r :=0 to N - 1 do
1f row[r] = 0 & diagl[r + c] = 0 then (
diagZ[r + 7 - c] := 1;
try(c + 1);))

1n
try(0)
end

EXpression

Seqguential Composition
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let
var N := 8
type intArray = array of 1int

var diagZ := intArray[N + N - 1] of 0

function printboard() = (
for 1 := 0 to N -1 do (
for 3 :=0 to N - 1 do
print(i1f col[1] = J then
"o
else
tL);
print("\n")))
function try = (
1f ¢ = N then
printboard()
else

for r := 0 to N - 1 do

1f row[r] = 0 & diagl[r + c] = 0 then (

diagZ[r + 7 - c] := 1;
tryCc + 1)3))
1N
try(0)
end

Formal Parameter
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let
var N := 8
type intArray = array of 1int

var diagZ := intArray[N + N - 1] of 0

function printboard() = (
for 1 :=0 to N -1 do (
for 3 :=0 to N - 1 do
print(i1f col[1] = J then
" 0"
else
R -
print("\n")))
function try(c : int) = (
1f ¢ = N then

printboard()
else
for r :=0 to N - 1 do
1f rowlrl]l = 0 & diagllr + c]

try(c + 1);))
1n
try(0)
end

= @ then (

EXpression
Assignment
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Functions can be nested

let

function prettyprint(tree : tree) : string =

let
var output := ""
function write(s : string) =
output := concat(output, s)
function show(n : 1int, t : tree) =

let
function indent(s : string) = (
write("\n");
for 1 := 1 to n do
write(" ")
output := concat(output, s))
1n
1f t = n1l then
indent(".")
else (

1ndent(t.key);
show(n + 1, t.left);
show(n + 1, t.right))

end
1n
show(0, tree);
output
end
1n
end
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Elements of Programs

Structure
- Programs have structure

Categories

- Program elements come in multiple categories
- Elements cannot be arbitrarily interchanged

Constructs
- Some categories have multiple elements

Hierarchy
- Categories are organized in a hierarchy

37



Decomposing
Programs




Decomposing a Program into Elements

let function fact(n : 1nt) : 1nt =
1f n < 1 then
1
else

n * fact(n - 1)

1n
fact(10)
end

39



Decomposing a Program into Elements

function fact(n : i1nt) : 1nt =

1f n < 1 then
1

else
n * fact(n - 1)

40



Decomposing a Program into Elements

1f n < 1 then

1

else
n * fact(n - 1)

41



Decomposing a Program into Elements

1f n < 1 then
1
else
Tid n * fact(n - 1)

42



Decomposing a Program into Elements

43



Decomposing a Program into Elements

Tid

Exp.lf

Exp.Int

Exp.Int

44



Decomposing a Program into Elements

Tid

Exp.lf

fact(10) in

Expnt

Etc.

let function fact(n : int) : 1nt =
1f n < 1 then

1
else

fact(10)
end

n *¥ fact(n - 1)

Exp.Call
II fact n - 1

45



Tree Structure Represented as (First-Order) Term

let function fact(n : int) : int = Mod(
if n < 1 then Let(
1 [ FunDecs(
el se [ Fun?ec(
"fact™
. n * fact(n - 1) , [FArg("n", Tid("int"))]
tn , Tid("int™)
fact(10) IfC
end Lt(Var("n"), Int("1"))
, Int("1™)
, Times(
Var("'n")
, Call("fact", [Minus(Var("'n"), Int("1"))])
)
)
)
|
)
|
, [Call("fact", [Int("10")])]
)

)

46



Decomposing Programs

Textual representation

- Convenient to read and write (human processing)
- Concrete syntax / notation

Structural tree/term representation

- Represents the decomposition of a program into elements
- Convenient for machine processing

- Abstract syntax

47



Formalizing Program Decomposition

What are well-formed textual programs?

What are well-formed terms/trees?

How to decompose programs automatically?

48



Abstract Syntax:
Formalizing Program
Structure




Algebraic Signatures

sighature
sorts SO S1 S2 ..

constructors
C : S1 *S82 * .. ->1S0

Sorts: syntactic categories

Constructors: language constructs

50



Well-Formed Terms

The family of well-formed terms T(Sig)

defined by signature Sig

IS Inductively defined as follows:

IfC:S1*S2 " ... -> 30 is a constructor in Sig and
if t1, 12, ... are terms in T(SIg)(S1), T(SIg)(S2), ...,

then C(t1, t2, ...) is a term in T(Sig)(S0)

51



Well-Formed Terms: Example

If(
Lt(Var("n"), Int("1"))

1f n < 1 then , Int("1™)

1 , Ti1mes(
else Var("'n")

n * fact(n - 1) , Call("fact", [Minus(Var('n"), Int("1"))])
decompose )

)
signhature ' well-formed wrt

sorts Exp
constructors
Int . IntConst -> Exp
Var . ID -> EXxp
Times : Exp * Exp -> Exp
Exp -> EXp

Minus : Exp *
Lt . Exp * Exp -> Exp
3

If . Exp * Exp * Exp -> Exp
Call : ID * List(Exp) -> Exp



Lists of Terms

signhature
sorts Exp

constructors

Call : ID * List(Exp) -> Exp

[Minus(Var("n"), Int(“1”))]

[Minus(Var("n"), Int(“1”)), Lt(Var("n"), Int("1"))]
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Well-Formed Terms with Lists

The family of well-formed terms T(Sig)
defined by signhature Sig

IS Inductively defined as follows:

IfC:S1*352 ... -> 80 Is a constructor in Sig and
if t1, t2, ... are terms in T(Sig)(S1), T(Sig)(S2), ...,
then C(t1, 12, ...) is a term in T(Sig)(S0)

If t1, 12, ... are terms in T(SIQ)(S),
Then [t1, t2, ...] is a term in T(Sig)(List(S))

54



Abstract Syntax

Abstract syntax of a language
- Defined by algebraic signature

- Sorts: syntactic categories

- Constructors: language constructs

Program structure

- Represented by (first-order) term

- Well-formed with respect to abstract syntax
- (Isomorphic to tree structure)
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From Abstract Syntax
to Concrete Syntax



What does Abstract Syntax Abstract from?

sighature
sorts Exp
constructors
Int . IntConst -> Exp
Var . ID -> EXxp

Times : Exp * Exp -> Exp

Minus : Exp * Exp -> Exp

Lt . Exp * Exp -> Exp

If . Exp * Exp * Exp -> Exp
Call : ID * List(Exp) -> Exp

Signhature does not define ‘notation’

o57



What is Notation?

1f n < 1 then
1

signature else
sorts Exp n * fact(n - 1)
constructors

Int

Var
Times : Exp * Exp -> Exp el * e

Minus : Exp

Lt
If
Call

. IntConst -> Exp N
. ID -> EXxp X

* Exp -> Exp el - e
. Exp * Exp -> Exp el < e’
. Exp * Exp * Exp -> Exp 1f el then e2 else e3
. ID * List(Exp) -> Exp f(el, e2, ..)

Notation: literals, keywords, delimiters, punctuation
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How can we couple notation to abstract syntax?

1f n < 1 then
1

signhature else
sorts Exp n * fact(n - 1)
constructors

Int . IntConst -> Exp N

Var . ID -> EXxp X

Times : Exp * Exp -> Exp el * e

Minus : Exp * Exp -> Exp el - e

Lt . Exp * Exp -> Exp el < e’

If . Exp * Exp * Exp -> Exp 1f el then e2 else e3
Call : ID * List(Exp) -> Exp f(el, e2, ..

Notation: literals, keywords, delimiters, punctuation



Context-Free Grammars

grammar
non-terminals NO N1 NZ ..
terminals T0 T1 T2 ..

productions
NO = S1 S2 ..

Non-terminals (N): syntactic categories
Terminals (T): words of sentences
Symbols (S): non-terminals and terminals
Productions: rules to create sentences
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Well-Formed Sentences

The family of sentences L(G) defined by context-free
grammar G is inductively defined as follows:

A terminal T is a sentence in L(G)(T)

If NO =S1 S2 ... Is a production in G and
if wl, w2, ... are sentences in L(G)(S1), L(G)(S2), ...,
then w1 w2 ... Is a sentence in L(G)(NO)

o1



Well-Formed Sentences

1f n < 1 then
1
else

n * fact(nh - 1)

grammar
non-terminals Exp
productions

Exp = IntConst

Exp = Id

Exp = Exp "*" Exp

Exp = Exp "-" EXp
Exp = Exp "<" Exp
Exp = "1f" Exp "then" Exp "else

Exp = Id "(" 1Exp ", "* ")°7

EXp




I What is the relation between concrete and abstract syntax?

If(
Lt(Var("n"), Int("1"))
if n < 1 then , Int(C"1")
1 , Times(
else Var("n")
n * fact(nh - 1) , Call("fact", [Minus(Var('n"), Int("1"))])
)
)

grammar sighature

non-terminals Exp sorts Exp

productions constructors
Exp = IntConst Int . IntConst -> Exp
Exp = Id Var . ID -> Exp
Exp = Exp "*" Exp Times : Exp * Exp -> Exp

Exp = Exp "-" Exp Minus : Exp * Exp -> Exp
Exp = Exp "<" Exp Lt . Exp * Exp -> Exp
Exp = "1f" Exp "then" Exp "else" Exp If . Exp * Exp * Exp -> Exp

Exp = Id "(" {Exp ","}* ")" Call : ID * List(Exp) -> Exp




grammar
non-terminals Exp

productions

EXp
EXp
EXp
EXp

Exp =

Exp
Exp

Context-Free Grammars with Constructor Declarations

sorts Exp

context-free syntax

Exp.Int
Exp.Var
Exp.Times
Exp.M1nus
Exp.Lt
Exp.If
Exp.Call

IntConst

Id
EXp "*" EXp

Exp - EXxp

Exp "< EXxp

"1f" Exp "then" Exp "else

Id "(" {Exp ","}* ")’

IntConst

Id
Exp "*" EXp

Exp -7 EXp
Exp "<" Exp
"1f" Exp "then" Exp "else

Id "(" {Exp ", P )"

EXp

sighature
sorts Exp
constructors
Int . IntConst -> Exp
Var . ID -> Exp
Times : Exp * Exp -> Exp

Minus : Exp * Exp -> Exp
Lt . Exp * Exp -> Exp

Exp If . Exp * Exp * Exp -> Exp
Call : ID * List(Exp) -> Exp



Context-Free Grammars with Constructor Declarations

sorts Exp
context-free syntax
Exp.Int IntConst
Exp.Var Id
Exp "*" Exp
Exp "-" Exp
Exp "<" Exp
"1f" Exp "then" Exp "else" Exp
Id "C" {Exp ","}* ")"

Exp.Times
Exp.Minus
Exp.Lt
Exp.If
Exp.Call

Abstract syntax: productions define
constructor and sorts of arguments

Concrete syntax: productions define
notation for language constructs
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I CFG with Constructors defines Abstract and Concrete Syntax

Abstract syntax
- Production defines constructor, argument sorts, result sort
- Abstract from notation: lexical elements of productions

Concrete syntax
- Productions define context-free grammar rules

Some details to discuss

- Ambiguities

- Seguences

- Lexical syntax

- Converting text to tree and back (parsing, unparsing)
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Sequences (Lists)



Encoding Sequences (Lists)

printlist(merge(listl,list2)) sorts Exp

context-free syntax
Exp.Int = IntConst
Exp.Var = Id
Exp.Times = Exp "*" Exp
Exp.Minus = Exp "-" Exp

Exp.Lt = Exp "<" Exp

Exp.If = "1f" Exp "then" Exp "else

Exp.Call = Id "(" ExpList ")"

Call("printlist”
, [Call("merge", [Var("listl")

, Var("list2")])]

)

EXp

ExpList.N1il =
ExpList = ExpL1stNE

ExpL1stNE.One = Exp
ExpL1stNE.Snoc = ExpListNE “," Exp




Sugar for Sequences and Optionals

printlist(merge(listl,l1st2)) context-free syntax

Call("printlist" // automatically generated

, [Call("merge"”, [Var("listl"™)

. g {Exp ","}* N1l = // empty list
) ) VGP( IIStZ )])] H,”}* _ {EXP ","}+

", " +.0ne Exp

, y+.Snoc = {Exp ","}+ "," Exp

context-free syntax

EXp . Ca-l_-l_ — Id IICII {Exp 11 : ll}* ll)ll

N1l // empty list
EXp+

Exp+.0ne Exp
Exp+.Snoc = Exp+ Exp

Exp?.None = // Nno expression
Exp?.Some = Exp // one expression




Normalizing Lists

rules context-free syntax

Snoc(N11(), x) -> Cons(x, N11()) // automatically generated
Snoc(Cons(x, xs), y) -> Cons(x, Snoc(xs, y))

S"EEONLL = // empty list
One(x) -> Cons(x, Ni11(Q)) A o = {Exp ","}+

Nil() -> [] " +.0ne Exp

Cons(x, xs) -> [x | xs] , " }+.Snoc = {Exp ","}+ "," Exp

N1l // empty list
EXp+

Exp+.0ne Exp
Exp+.5Snoc = Exp+ Exp

Exp?.None = // Nno expression
Exp?.Some = Exp // one expression




Using Sugar for Sequences

module Functions

let function power(x: int, n:
imports Identifiers if n <= 0 then 1
imports Types else x * power(x, n - 1)
1n power(3, 10)
context-free syntax end
Dec = FunDec+
FunDec = "function" Id "(" {FArg ","}* ")" "=" Exp
FunDec = "function” Id "(" {FArg ","}* ")" ":" Type "=" Exp
FArg = 1Id ":" Type
Exp = Id "(" {Exp ","}* ")"

module Bindings

imports Control-Flow Identifiers Types Functions Variables

sorts Declarations
context-free syntax

Exp "'I_e_t" Dec* "_i_n" {Exp mnm ., n * "end"

)

Declarations "declarations" Dec*

1nt): 1nt =

/1



Lexical Syntax




I Context-Free Syntax vs Lexical Syntax

Mod(
Let(

[ FunDecs(
[ FunDec(
"power"

, LFArg("x", Tid("1int")), FArg("'n", Tid("int"))]

phrase structure

, 1i1d("int™)
, If(
Leg(Var("n"), Int("0"))
Lot f . . . . , Int("1")
et uhctlon power(x: i1nt, n: int): 1nt = , Times( separated by layout
1f n <= 0 then 1 Var("x")
else x * power(x, n - 1) , Call( +~— lexeme / token
in power(3, 10) power |
, [Var("x"), Minus(Var("n"), Int("1"))]
end )
)
)
)
] not separated by layout
)

]
[Call("power”, [Int("3"), Int("10")])]

)
) K\\ structure not relevant




Character Classes

lexical syntax // character codes

Character = [\065]

Range [\65-\90]

Union [\65-\90] \/ [\97-\122]
Difference [\O-\127] / [\10\13]

Union [\O-\9\11-\12\14-\255]

Character class represents choice from a set of characters
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Sugar for Character Classes

lexical syntax // sugar

CharSugar

CharClass

SugarRange

Union

RangeComb1

Complement

a]
\97]

"abcdefghijklmnopgrstuvwxyz]
\97-\122]

a-z]
"\97-\122]

a-z] \/ [A-Z] \/ [0-9]
\48-\57\05-\90\97-\122]

a-z0-9\_]
\48-\57\95\97-\122]

~[\n\r]
\0-\255] / [\10\13]
\0-\9\11-\12\14-\255]

lge)



Literals are Sequences of Characters

lexical syntax //

Literal

CaseInsensitive

literals
"then" // case sensitive sequence of characters

'then' // case 1nsensitive sequence of characters

t] [h] [e] [n]
Tt] [Hh] [Ee] [Nn]

\116] [\104] [\101] [\110]

= [\84\116] [\72\104] [\69\101] [\/38\110]

/0



ldentifiers

lexical syntax
Id = [a-zA-7Z] [a-zA-Z0-9\_]*

a
B
cD

xyz10

1nternal _
CamelCase
lower_case

’r’



Lexical Ambiguity: Longest Match

lexical syntax
Id = [a-zA-7Z] [a-zA-7Z0-9\_]*
context-free syntax
Exp.Var Id
Exp.Call = Exp Exp {left} // curried function call

Mod(
amb (
[Var("ab"),
Call(Var("a"), Var("b"))]

),
)

/8



Lexical Ambiguity: Longest Match

lexical syntax
Id = [a-zA-7Z] [a-zA-Z0-9\_]*

context-free syntax
Exp.Var = Id
Exp.Call = Exp Exp {left} // curried function call

Mod(
amb (
[ amb(

[ Var("abc")

, Call(

amb (

[Var("ab"), Call(Var("a"), Var("b"))]
abc [{:>» )

, Var("c")

)
1

)
, Call(Var("a"), Var("bc"))

79



Lexical Restriction => Longest Match

lexical syntax
Id = [a-zA-Z] [a-zA-7Z0-9\_]*
lexical restrictions

Id -/- [a-zA-Z0-9\_] // longest match for 1identifiers
context-free syntax

Exp.Var = Id

Exp.Call = Exp Exp {left} // curried function call

abc def ghi [:E>> Call(Call(Var("abc"), Var("def")), Var("ghi"))

Lexical restriction: phrase cannot be followed by character in character class
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Lexical Ambiguity: Keywords overlap with Identifiers

lexical syntax
Id = [a-zA-7Z] [a-zA-7Z0-9\_]*
lexical restrictions
Id -/- [a-zA-7Z0-9\_] // longest match for 1identifiers

context-free syntax
Exp.Var = Id
Exp.Call = Exp Exp {left}
Exp.IfThen = "1f" Exp "then" Exp

amb (
[ Mod(
Call(
CallCCallCVarC"ift"), Var("def")), Var("then"))

if def then ghi |:> ) var(“ght™)

)
, Mod(IfThen(Var('def"), Var("ghi1")))

|

)




Lexical Ambiguity: Keywords overlap with Identifiers

lexical syntax
Id = [a-zA-7] [a-zA-7Z0-9\_]*
lexical restrictions
Id -/- [a-zA-Z0-9\_] // longest match for 1identifiers

context-free syntax
Exp.Var = 1d
Exp.Call = Exp Exp {left}
Exp.IfThen = "1f" Exp "then" Exp

amb (
[ Mod(

Call(Call(Var("1fdef"), Var("then")), Var("ghi"))
ifdef then ghi |:> )

, Mod(IfThen(Var("def"), Var("ghi")))

|
),
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Reject Productions => Reserved Words

lexical syntax
Id = [a-zA-Z] [a-zA-7Z0-9\_]*
Id = "1f" {reject}
Id = "then" {reject}

lexical restrictions

Id -/- [a-zA-Z0-9\_] // longest match for 1identifiers
"1f" "then" -/- [a-zA-70-9\_]
context-free syntax
Exp.Var = 1d
Exp.Call Exp Exp {left}
Exp.IfThen = "1f" Exp "then" Exp

Lt def then ghi [:E>> IfThen(Var("def"), Var("ghi"))
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Reject Productions => Reserved Words

lexical syntax
Id [a-zA-7Z] [a-zA-Z0-9\_1*
Id = "1f" {reject}
Id = "then" {reject}

lexical restrictions

Id -/- [a-zA-Z0-9\_] // longest match for 1identifiers
"1f" "then" -/- [a-zA-70-9\_]
context-free syntax
Exp.Var = 1d
Exp.Call = Exp Exp {left}
Exp.IfThen = "1f" Exp "then" Exp

34



Character-Level
Grammars




Character-Level Grammars

Core language

- context-free grammar productions
- with constructors

- only character classes as terminals
- explicit definition of layout

Desugaring

- express lexical syntax in terms of character classes

- explicate layout between context-free syntax symbols
- separate lexical and context-free syntax non-terminals
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Explication of Layout by Transformation

context-free syntax

Exp.Int IntConst
Exp.Uminus = "-" Exp
Exp.Times = Exp "*" Exp {
Exp.Divide = Exp "/" Exp {

Exp.Plus = Exp "+" Exp {

* Symbols in context-free syntax are
implicitly separated by optional layout

syntax

Exp-CF.Int = IntConst-CF

Exp-CF.Uminus = "-" LAYOUT?-CF Exp-CF

Exp-CF.Times = Exp-CF LAYOUT?-CF "*" T7-CF Exp-CF {
Exp-CF.Divide = Exp-CF LAYOUT?-CF "/" T7-CF Exp-CF {
Exp-CF.Plus = Exp-CF LAYOUT?-CF "+" T?7-CF Exp-CF {




Separation of Lexical and Context-free Syntax

lexical syntax
[a-zA-7] [a-zA-Z0-9\_]*
"1f" {rejectt}
= "then" {reject}
context-free syntax
Exp.Var = Id

= [\65-\90\97-\122] [\48-\57\065-\90\95\97-\122]*-LEX
= "1f" {reject}

= "then" {reject}

= Id-LEX

Var = Id-CF




Why Separation of Lexical and Context-Free Syntax?

lexical syntax
Id = [a-zA-7Z] [a-zA-7Z0-9\_]*
Id = "1f" {reject}
Id = "then" {reject}
context-free syntax
Exp.Var = Id

[\65-\90\97-\122] [\48-\57\65-\90\95\97-\122]*
"1f" {reject}

"then" {reject}

Exp.Var = Id

Homework: what would go wrong if we not do this?



syntax
4 character classes

"if" = [\105] [\102] as only terminals
"then" = [\116] [\104] [\101] [\110] /

\48-\57\65-\90\95\97-\122]+-LEX = [\48-\57\65-\90\95\97-\122] \\\\\\\A

\48-\57\065-\90\95\97-\122]+-LEX = [\48-\57\65-\90\95\97-\122]+-LEX [\48-\57\65-\90\95\97-\122]
\48-\57\65-\90\95\97-\122]*-LEX
\48-\57\065-\90\95\97-\1221*-LEX = [\48-\57\65-\90\95\97-\122]+-LEX

Id-LEX = [\65-\90\97-\122] [\48-\57\65-\90\95\97-\122]*-LEX
Id-LEX = "1f" {reject}

Id-LEX = "then" {reject}
Id-CF Id-LEX ———__—— |

.Var = Id-CF Ar”"’q

.Call = Exp-CF LAYOUT?-CF Exp-CF {left}
IfThen = "if" LAYOUT?-CF Exp-CF LAYOUT?-CF "then" LAYOUT?-CF Exp-CF

separate lexical and
context-free syntax

Exp-C
Exp-C
Exp-C

LAYOUT-CF LAYOUT-CF LAYOUT-CF {left}
LAYOUT?-CF = LAYOUT-CF
LAYOUT?-CF =

lexical syntax
Id = [a-zA-7] [a-zA-7Z0-9\_]*
Id = “1f" {reject}
Id = "then" {reject}

lexical restrictions
Id -/- [a-zA-7Z0-9\_]
"1f" "then" -/- [a-zA-7Z0-9\_]

restrictions
separate context-

Id-LEX -/- [\48-\57\65-\90\95\97-\122" free symbols by

"1f" -/- [\48-\57\65-\90\95\97-\122_

"then" -/- [\48-\57\65-\90\95\97-\122" optional layout context-free syntax
] ] Exp.Var = Id
priorities Exp.Call = Exp Exp {left}

Exp.IfThen = "1f" Exp "then" Exp

Exp-CF.Call left Exp-CF.Call,
LAYOUT-CF = LAYOUT-CF LAYOUT-CF 1left LAYOUT-CF = LAYOUT-CF LAYOUT-CF 90




Syntax Engineering in
Spoofax




Multi-Purpose Syntax Definition with SDF3

Parser
Error recovery

Statement.If = < Pretty-printer
1T (<Exp>)
<Statement> Abstract syntax tree schema
else

ntacti lorin
<Statement> Sy actic coloring

Syntactic completion

Folding rules

Outline rules




Generating Artifacts from Syntax Definitions

Language
Brarar Formatter Independent
Generator Generator

User-Defined
Specification

ParseGen Program

Formatting

Rules
Generated

Artifact

Parser

Algebraic Completion
Signature Rules

Completion
Generator




Syntax Engineering in Spoofax

Developing syntax definition

- Define syntax of language in multiple modules
- Syntax checking, colouring

- Checking for undefined non-terminals

Testing syntax definition
- Write example programs in editor for language under def

- Inspect abstract syntax terms
» Spoofax > Syntax > Show Parsed AST

- Write SPT test for success and failure cases
» Updated after build of syntax definition
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Declarative Syntax
Definition: Summary




Declarative Language Definition

Language definition
- Define syntax and semantics of (domain-specific) programming languages

High-level and Understandable
- Can be used as reference documentation

Executable
- Can be used to generate tools

Declarative
- No need to understand algorithms

Multi-purpose
- Derive many/all tools from single definition

Correct by Construction
- Implementations sound wrt declarative semantics
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Separation of Concerns

Representation
- Standardized representation for <aspect> of programs
- Independent of specific object language

Specification Formalism

- Language-specific declarative rules
- Abstract from implementation concerns

Language-Independent Interpretation

- Formalism interpreted by language-independent algorithm
- Multiple interpretations for different purposes

- Reuse between implementations of different languages
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Declarative Syntax Definition

Representation
- Syntax trees

Specification Formalism: SDF3
- Productions + Constructors + Templates + Disambiguation

Declarative Semantics
- Well-formedness of syntax trees wrt syntax definition

Language-Independent Tools

- Parser

- Formatting based on layout hints in grammar
- Syntactic completion
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Declarative Syntax Definition

Syntax definition

- Define structure (decomposition) of programs
- Define concrete syntax: notation

- Define abstract syntax: constructors

Using syntax definitions (next)

- Parsing: converting text to abstract syntax term
- Pretty-printing: convert abstract syntax term to text
- Editor services: syntax highlighting, syntax checking, completion

10C



Reading Material



The perspective of this lecture on declarative
syntax definition 1s explained more elaborately 1in
this Onward! 2010 essay. It uses an on older version
of SDF than used 1n these slides. Production rules
have the form

X1 .. Xn => N {cons(“C”)}
i1nstead of

N.C — X]_ Xn

Assignment

Read this paper 1in preparation for Lecture 2

https://do1.0org/10.1145/1932682.1869535

Pure and Declarative Syntax Definition:
Paradise Lost and Regained

Lennart C. L. Kats

Delft University of Technology
l.c.l.kats@tudelft.nl

Abstract

Syntax definitions are pervasive in modern software sys-
tems, and serve as the basis for language processing tools
like parsers and compilers. Mainstream parser generators
pose restrictions on syntax definitions that follow from their
implementation algorithm. They hamper evolution, main-
tainability, and compositionality of syntax definitions. The
pureness and declarativity of syntax definitions is lost. We
analyze how these problems arise for different aspects of
syntax definitions, discuss their consequences for language
engineers, and show how the pure and declarative nature of
syntax definitions can be regained.

Categories and Subject Descriptors D.3.1 [Programming
Languages]: Formal Definitions and Theory — Syntax;
D.3.4 [Programming Languages): Processors — Parsing;
D.2.3 [Software Engineering]: Coding Tools and Techniques

General Terms Design, Languages

Prologue

In the beginning were the words, and the words were trees,
and the trees were words. All words were made through
grammars, and without grammars was not any word made
that was made. Those were the days of the garden of Eden.
And there where language engineers strolling through the
garden. They made languages which were sets of words by
making grammars full of beauty. And with these grammars,
they turned words into trees and trees into words. And the
trees were natural, and pure, and beautiful, as were the gram-
mars.

Among them were software engineers who made soft-
ware as the language engineers made languages. And they
dwelt with them and they were one people. The language en-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Onward! 2010, October 17-21, 2010, Reno/Tahoe, Nevada, USA.
Copyright (©) 2010 ACM 978-1-4503-0236-4/10/10...$10.00

Eelco Visser

Delft University of Technology
visser@acm.org

Guido Wachsmuth

Delft University of Technology
g.h.wachsmuth®tudelft.nl

gineers were software engineers and the software engineers
were language engineers. And the language engineers made
language software. They made recognizers to know words,
and generators to make words, and parsers to turn words
into trees, and formatters to turn trees into words.

But the software they made was not as natural, and pure,
and beautiful as the grammars they made. So they made soft-
ware to make language software and began to make language
software by making syntax definitions. And the syntax def-
initions were grammars and grammars were syntax defini-
tions. With their software, they turned syntax definitions into
language software. And the syntax definitions were language
software and language software were syntax definitions. And
the syntax definitions were natural, and pure, and beautiful,
as were the grammars.

The Fall Now the serpent was more crafty than any other
beast of the field. He said to the language engineers,

Did you actually decide not to build any parsers?
And the language engineers said to the serpent,

We build parsers, but we decided not to build others
than general parsers, nor shall we try it, lest we loose

our syntax definitions to be natural, and pure, and
beautiful.

But the serpent said to the language engineers,

You will not surely loose your syntax definitions to be
natural, and pure, and beautiful. For you know that
when you build particular parsers your benchmarks
will be improved, and your parsers will be the best,
running fast and efficient.

So when the language engineers saw that restricted parsers
were good for efficiency, and that they were a delight to the
benchmarks, they made software to make efficient parsers
and began to make efficient parsers by making parser defini-
tions. Those days, the language engineers went out from the
garden of Eden. In pain they made parser definitions all the
days of their life. But the parser definitions were not gram-
mars and grammars were not parser definitions. And by the
sweat of their faces they turned parser definitions into effi-




The SPoofax Testing (SPT) language used

the section on testing syntax definitions was

ihtroduced 1n this OOPSLA 2011 paper.

1N

https://do1.0org/10.1145/2076021.2048080

Integrated Language Definition Testing

Enabling Test-Driven Language Development

Lennart C. L. Kats Rob Vermaas Eelco Visser

Delft University of Technology LogicBlox

|.c.l.kats@tudelft.nl

Abstract

The reliability of compilers, interpreters, and development
environments for programming languages is essential for ef-
fective software development and maintenance. They are of-
ten tested only as an afterthought. Languages with a smaller
scope, such as domain-specific languages, often remain
untested. General-purpose testing techniques and test case
generation methods fall short in providing a low-threshold
solution for test-driven language development. In this paper
we introduce the notion of a language-parametric testing
language (LPTL) that provides a reusable, generic basis for
declaratively specifying language definition tests. We inte-
grate the syntax, semantics, and editor services of a language
under test into the LPTL for writing test inputs. This paper
describes the design of an LPTL and the tool support pro-
vided for it, shows use cases using examples, and describes
our implementation in the form of the Spoofax testing lan-
guage.
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1. Introduction

Software languages provide linguistic abstractions for a do-
main of computation. Tool support provided by compil-
ers, interpreters, and integrated development environments
(IDEs), allows developers to reason at a certain level of
abstraction, reducing the accidental complexity involved
in software development (e.g., machine-specific calling
conventions and explicit memory management). Domain-
specific languages (DSLs) further increase expressivity by
restricting the scope to a particular application domain.
They increase developer productivity by providing domain-
specific notation, analysis, verification, and optimization.

With their key role in software development, the correct
implementation of languages is fundamental to the reliability
of software developed with a language. Errors in compilers,
interpreters, and IDEs for a language can lead to incorrect
execution of correct programs, error messages about correct
programs, or a lack of error messages for incorrect programs.
Erroneous or incomplete language implementations can also
hinder understanding and maintenance of software.

Testing is one of the most important tools for software
quality control and inspires confidence in software [1]. Tests
can be used as a basis for an agile, iterative development pro-
cess by applying test-driven development (TDD) [1], they
unambiguously communicate requirements, and they avoid
regressions that may occur when new features are introduced
or as an application is refactored [2, 31].

Scripts for automated testing and general-purpose testing
tools such as the xUnit family of frameworks [19] have been
successfully applied to implementations of general-purpose
languages [16, 38] and DSLs [18, 33]. With the successes
and challenges of creating such test suites by hand, there
has been considerable research into automatic generation
of compiler test suites [3, 27]. These techniques provide an
effective solution for thorough black-box testing of complete
compilers, by using annotated grammars to generate input
programs.

Despite extensive practical and research experience in
testing and test generation for languages, rather less atten-
tion has been paid to supporting language engineers in writ-
ing tests, and to applying TDD with tools specific to the do-
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Syntax Definition with SDF3

The definition of a textual (programming) language starts with its syntax. A grammar
describes the well-formed sentences of a language. When written in the grammar
language of a parser generator, such a grammar does not just provide such a
description as documentation, but serves to generate an implementation of a parser
that recognizes sentences in the language and constructs a parse tree or abstract
syntax tree for each valid text in the language. SDF3 is a syntax definition formalism
that goes much further than the typical grammar languages. It covers all syntactic
concerns of language definitions, including the following features: support for the full
class of context-free grammars by means of generalized LR parsing; integration of
lexical and context-free syntax through scannerless parsing; safe and complete
disambiguation using priority and associativity declarations; an automatic mapping
from parse trees to abstract syntax trees through integrated constructor declarations;
automatic generation of formatters based on template productions; and syntactic
completion proposals in editors.
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